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Dynamic Claims Reserving in Non-Life Insurance: A State Space 

Approach with Kalman Filtering and Monte Carlo Forecasting 

Dr. Ahmed Samy Said El Azab; Dr. Raghda Ali Abdelrahman and Dr. Zahra Salah Eldin 

Abstract 

Accurate estimation of claims reserves is essential to maintaining the 

financial stability of non-life insurers, particularly in markets subject to 

structural volatility and evolving regulatory standards. Traditional stochastic 

reserving models such as the Mack model are widely used for their transparency 

and analytical simplicity, yet they often fall short in environments characterized 

by irregular reporting, dynamic settlement patterns, and macroeconomic 

disruption. 

To overcome these challenges, this research proposes a Scalar State 

Space Model (SSM) integrated with Kalman filtering. Applied to cumulative 

paid claims data from an Egyptian motor insurance portfolio, the model 

captures latent calendar-year effects and enables recursive reserve updating as 

new data becomes available. Through Monte Carlo simulation, the SSM 

produces full predictive distributions of future liabilities, offering a 

comprehensive view of reserve uncertainty. 

Comparative analysis against the benchmark Mack model shows that 

the SSM delivers more stable reserve estimates and better reflects underlying 

risk, especially in recent accident years where uncertainty is most pronounced. 

Unlike the Mack model’s reliance on fixed development patterns and 

independence assumptions, the SSM dynamically models time-varying 

processes and structural shocks. 

The results highlight the SSM’s advantages in adaptability, robustness, 

and regulatory alignment, making it a compelling alternative for insurers 

operating under IFRS 17 and similar solvency-focused regimes. These findings 

advocate for the integration of dynamic stochastic reserving methods into the 

actuarial toolkit, particularly in emerging markets facing data volatility and 

structural transformation. 

Keywords: State Space Model; Kalman Filter; IBNR; Mack Model; Monte 

Carlo Simulation; Forecast Accuracy; Stochastic Reserving. 
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1. Introduction 

Claim reserving is a central pillar in non-life insurance operations, 

particularly for estimating liabilities associated with claims that have been 

Incurred But are not yet fully Reported or settled (IBNR). Accurate reserving 

is essential not only for meeting policyholder obligations, but also for 

maintaining solvency, ensuring regulatory compliance, and supporting sound 

pricing and reinsurance strategies. 

Over the past decades, actuaries have developed a wide array of 

reserving techniques based on historical claims development data, typically 

structured in run-off triangles. These techniques are broadly categorized into 

deterministic and stochastic methods. Deterministic approaches, such as the 

widely used Chain Ladder method, are simple and interpretable but are often 

criticized for their sensitivity to outliers and lack of explicit measures of 

uncertainty (England & Verrall, 2002). As a response, stochastic reserving 

models have gained popularity, offering a more rigorous framework by 

incorporating randomness in the claims process (Mack, 1993); (Wüthrich & 

Merz, 2008). 

Among the early stochastic models, the Mack model (Mack, 1993) and 

(Mack, 1999) stands out for providing distribution-free estimates of reserve 

variability while maintaining consistency with the Chain Ladder’s point 

estimates. Later advancements introduced Generalized Linear Models (GLMs), 

allowing actuaries to flexibly model incremental claims while accounting for 

heteroscedasticity and overdispersion see (England & Verrall, 2002). Despite 

their strengths, both Chain Ladder and GLM-based approaches are essentially 

static, assuming fixed development patterns over time. 

However, insurance claims development often exhibits time-dependent 

behavior, affected by evolving business practices, macroeconomic conditions, 

calendar year trends, and legal reforms. To address such complexities, 

researchers have turned to dynamic stochastic models, most notably State Space 

Models (SSMs). These models, initially introduced to actuarial reserving by 

(DeJong & Zehnwirth, 1983)  and later extended by (Verrall, 1994) and (Taylor, 

et al., 2003), represent claims development as a latent process evolving over 

time. SSMs are estimated using Kalman filtering and smoothing algorithms, 

which enable real-time updating, better forecasting accuracy, and full predictive 

distributions. 
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The potential of such advanced models is particularly relevant in the 

context of Egypt’s insurance industry, which has been undergoing significant 

transformation. The Financial Regulatory Authority (FRA) has intensified 

efforts to modernize actuarial practices, improve risk management, and align 

with global reporting standards like IFRS 17. This new regime emphasizes a 

market-consistent, forward-looking, and uncertainty-aware approach to 

reserving; one that traditional deterministic models struggle to fulfill. 

Additionally, the Egyptian market faces data limitations, especially for long-

tail lines of business, which makes the flexibility and robustness of dynamic 

models like SSMs even more valuable. 

This research contributes to the ongoing development of reserving 

practices by applying a scalar State Space Model with Kalman filtering to a 

cumulative paid claims triangle. The model’s performance is empirically 

assessed and compared with the benchmark Mack model, focusing on forecast 

accuracy, reserve uncertainty, and practical implementation aspects. The 

analysis provides insights for Egyptian insurers and regulators into the viability 

of adopting dynamic reserving techniques that are both statistically robust and 

compliant with evolving global standards. 

2. Research Problem 

Traditional claims reserving techniques, most notably the deterministic 

Chain Ladder method and its stochastic extension, the Mack model; have long 

been pillars of actuarial practice due to their simplicity and minimal data 

requirements. However, these methods rely on strong assumptions: consistent 

development factors across time, independence between accident years, and 

homogeneous claim settlement behavior. In increasingly dynamic insurance 

environments, particularly in emerging markets like Egypt, these assumptions 

are often violated. 

The Egyptian non-life insurance market is characterized by irregular 

reporting patterns, volatile claim amounts, and systemic disruptions, such as 

inflation surges, legal reforms, and operational shifts. These complexities are 

especially prominent in high-volume lines like motor and medical insurance, 

where claim settlement processes can be highly nonlinear and reactive. 

Consequently, models that assume stable development patterns fail to 

accommodate the true nature of claim behavior, leading to unreliable reserve 

estimates and heightened financial risk. 
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This issue is further amplified by the country’s impending adoption of 

IFRS 17. Unlike previous frameworks, IFRS 17 demands that insurers 

incorporate forward-looking cash flows, explicit risk margins, and discounting 

mechanisms in reserve estimation. Classical methods, which focus on point 

estimates without accounting for uncertainty or process dynamics, are 

fundamentally misaligned with these requirements. 

The limitations of static reserving models become evident when 

examining real-world claims data, as illustrated in Figure 2.1. This heatmap 

shows cumulative paid claims across accident years (rows) and development 

years (columns) for motor insurance. In a stable claims development process, 

we would expect smooth, horizontally consistent gradients, reflecting uniform 

claim settlement behavior over time. However, the heatmap reveals pronounced 

irregularities, including abrupt shifts in intensity, plateaus, and nonlinear 

growth patterns, particularly in recent accident years.  

These disruptions reflect structural inconsistencies in claim reporting 

and settlement dynamics, potentially due to changes in operational practices, 

inflationary effects, or economic shocks. Such volatility violates key 

assumptions of traditional deterministic models like the Chain Ladder, which 

rely on stable, independent development factors across accident years. 

Consequently, applying these models uncritically risks significant 

misestimation, either over- or under-reserving.  

Figure 2.1. Volatility in Cumulative Claims Developments 
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These empirical observations highlight a critical need for more adaptive, 

probabilistic models that can handle uncertainty, evolving trends, and 

unobservable processes. State Space Models (SSMs); particularly when 

combined with Kalman filtering, offer a compelling alternative. They allow for 

the decomposition of claim development into latent state processes and 

observed noisy data, enabling real-time updates and robust forecasting. 

This research addresses the existing gap by empirically evaluating a 

scalar SSM against the benchmark Mack model using real Egyptian claims data. 

By comparing the two approaches in terms of forecast accuracy, reserve 

volatility, and IFRS 17 compatibility, the research aims to determine whether 

SSMs offer a more resilient and regulation-ready framework for reserving in 

volatile and data-limited markets. 

3. Research Objectives 

The primary objective of this research is to evaluate and compare the 

effectiveness of a scalar SSM with Kalman filtering against the classical Mack 

model for IBNR claims reserves in non-life insurance. The focus is on assessing 

forecasting accuracy and uncertainty quantification using Monte Carlo 

simulation. 

This research is guided by the following specific objectives: 

1- To identify the limitations of the Mack model in capturing volatile and 

irregular claims development patterns in the Egyptian motor insurance 

market. 

2- To construct and estimate a scalar State Space Model formulated on the 

cumulative paid claims’ triangle, incorporating latent calendar-year effects 

that evolve stochastically over time. 

3- To apply the Kalman filter and smoother for real-time estimation and 

dynamic updating of latent development trends, enabling recursive 

forecasting of future claims. 

4- To estimate IBNR reserves and predictive uncertainty under the SSM 

using Monte Carlo simulation, thereby obtaining a full empirical distribution 

of future liabilities rather than point estimates alone. 
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5- To compare the performance of the Mack model and the SSM based on: 

• Point estimate of IBNR reserves, 

• Forecasting error as measured by Mean Squared Error of Predication 

(MSEP), 

• Coefficient of variation as a proxy for reserve volatility, 

• Ability to capture tail risk through predictive distributions. 

6- To evaluate the practical implications of dynamic modeling for insurers 

operating in volatile or structurally shifting environments, with particular 

emphasis on the benefits of probabilistic and adaptive reserving approaches. 

4. Literature Review 

Over the past two decades, actuarial reserving has undergone a notable 

transformation, shifting from deterministic approaches like the Chain Ladder 

method to more flexible, stochastic, and dynamic models. Among these, State 

Space Models (SSMs) have gained substantial attention for their ability to 

capture latent structures, evolving claim behaviors, and data irregularities. 

Early contributions, such as those by (Alpuim & Ribeiro, 2003), 

introduced state space models as a dynamic alternative to static triangle-based 

methods. Their approach allowed for the decomposition of observed claims 

data into latent and observable components, offering improved estimation of 

reserves and uncertainty. Similarly, (Pang & He, 2012) and (Atherino, et al., 

2010) expanded this framework by emphasizing recursive estimation and 

restructured triangle data to accommodate time-series-based modeling of IBNR 

reserves. 

A significant leap in methodological development came from 

(Chukhrova & Johannssen, 2017), who applied Kalman filtering and smoothing 

techniques within an SSM context. Their work provided theoretical and 

empirical insights into how SSMs can outperform static models like the Mack 

model, particularly by enabling real-time updating of reserves and by producing 

full predictive distributions. This was further reinforced in their later review 

(Chukhrova & Johannssen, 2021), which systematically classified Gaussian and 

non-Gaussian SSMs and highlighted their capacity to handle both observation 

and process noise. 
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In parallel, (Peters, et al., 2017) advanced the Bayesian formulation of 

SSMs, emphasizing their use in generating full predictive distributions for 

reserves. They demonstrated how such models accommodate structural changes 

in the data while maintaining transparency and interpretability—key demands 

under modern solvency and reporting regimes. 

Building on these foundations, (Hendrych & Cipra, 2021) provided a 

practical framework for real-time reserving using Kalman filtering, focusing on 

model diagnostics and empirical validation. Their findings affirmed that SSMs 

offer superior adaptability and robustness, especially in the presence of 

structural volatility or data irregularities. (Nomura & Matsumori, 2024) 

introduced dynamic factor models within this paradigm, offering 

dimensionality reduction and more interpretable reserve forecasts in high-

dimensional settings. 

The emergence of machine learning and granular reserving methods has 

also influenced recent literature. (Taylor, 2019) contrasted traditional models 

with individual claim-level approaches, emphasizing the potential of hybrid 

techniques that integrate machine learning with classical actuarial methods. 

Similarly, (chwab & Schneider, 2024) proposed a novel neural network 

architecture to enhance the prediction of loss amounts incurred for reported but 

not settled (RBNS) claims, demonstrating improved accuracy over standard 

benchmark models like the chain ladder approach. In parallel, (Selukar, 2025) 

showcased how tools like SAS can operationalize SSMs with Kalman filtering 

for reserve estimation in real insurance portfolios. 

Despite this growing body of work, most applications remain focused 

on mature insurance markets with relatively stable data environments. As noted 

by (Gogol, 2019), emerging markets face unique challenges such as volatile 

claims development, sparse data, and shifting regulations, all of which may 

invalidate the assumptions of classical models like Mack or Chain Ladder. 

However, empirical studies applying SSMs in these settings, especially Egypt, 

are still scarce. 

Although the literature has extensively highlighted the theoretical and 

practical strengths of State SSMs integrated with Kalman filtering in stochastic 

claims reserving, empirical validation of their application in emerging markets, 

such as Egypt, remains scarce. These markets present significant challenges, 

including high data volatility, irregular reporting, and evolving regulatory 

requirements such as IFRS 17, which emphasizes probabilistic reserving 
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approaches with specified confidence levels. In the Egyptian insurance 

landscape, particularly within high-frequency lines like motor, marine, and 

medical insurance, claims development is often unpredictable, undermining the 

foundational assumptions of conventional models. Nevertheless, there has been 

limited empirical research assessing the real-world performance of SSMs in 

comparison to established models like the Mack model within this volatile and 

transitioning environment. 

5. Research Methodology 

To address the evolving, uncertain, and latent nature of claims 

development, this research adopts a scalar State Space Model (SSM) 

framework inspired by  (Chukhrova & Johannssen, 2017) and (Selukar, 2025). 

The model distinguishes between observed cumulative claims and unobserved 

latent states, such as development trends and calendar-year effects, enabling a 

dynamic view of the reserving process. Unlike traditional static methods, the 

SSM explicitly accounts for both state (processed) noise and observation 

(measurement) noise, making it well-suited for volatile environments with 

reporting irregularities. This approach allows for sequential estimation and real-

time updating of reserves using Kalman filtering and smoothing, offering 

improved adaptability and accuracy in forecasting future claims. 

5.1. Model Structure 

We consider cumulative claims 𝑪𝒊.𝒋 where 𝒊 is the accident year and 𝒋 is 

the development year. The calendar year is defined by 𝒕 = 𝒊 + 𝒋, and the scalar 

state space model is formulated in calendar-year format to reflect structural 

influences that affect entire diagonals of the run-off triangle. 

5.1.1. State Equation 

In state space modeling, the state equation plays a critical role in 

capturing the evolution of unobservable processes that drive the observable 

claim development. Specifically, in the context of claims reserving, these latent 

processes may reflect structural calendar year effects such as inflation, 

regulatory changes, or shifts in claim settlement practices—factors that are not 

directly observable in the claims triangle but influence its progression over 

time. 
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The state equation provides a mathematical framework for modeling 

how these latent components evolve across calendar years. It defines how the 

unobserved state at time 𝒕, denoted 𝜽𝒕, depends on its value in the previous year 

𝜽𝒕−𝟏, subject to random fluctuations or shocks. This allows the model to adapt 

flexibly to gradual or abrupt changes in the development environment. 

The evolution of the latent state is described by the state equation: 

𝜽𝒕 = 𝑮𝒕 𝜽𝒕−𝟏 + 𝝎𝒕 ,    𝝎𝒕 ~ 𝑵(𝟎, 𝑸)                                                (𝟏) 

where: 

• 𝜽𝒕 ∈ ℝ is the scalar latent state at calendar year 𝒕, 

• 𝑮𝒕 ∈ ℝ is the system coefficient governing the persistence of the state, 

• 𝝎𝒕 is the system noise (state innovation), modeled as a white noise 

process with zero mean and constant variance 𝑸, 

• 𝑸 > 𝟎 is the state noise variance, capturing the uncertainty or variability 

in the evolution of the latent state. 

In this research, we adopt the random walk specification, which 

assumes that the state follows a non-stationary path with perfect persistence. 

This is achieved by setting: 

𝑮𝒕 = 𝟏 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 

leading to the simplified form: 

𝜽𝒕 = 𝜽𝒕−𝟏 + 𝝎𝒕                                                                          (𝟐) 

The random walk assumption implies that the latent process evolves as 

the cumulative sum of independent shocks over time. It reflects a system where 

structural changes (e.g., gradual inflationary effects or regulatory drift) are not 

mean-reverting, making this formulation particularly suitable for long-term 

forecasting in claims reserving. This allows the model to track evolving trends 

without forcing the latent state to return to a fixed long-term average. 

The estimated sequence {𝜽𝒕} thus serves as a smooth, calendar-year-

driven representation of the underlying claim development trend, which is then 

linked to observed claims data through the observation equation described in 

the next section. 
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5.1.2. Observation Equation: 

While the state equation governs the latent calendar-year trend in claim 

development, the observation equation links this latent process to the actual 

data observed in the claims triangle—typically cumulative claims amounts. 

In the scalar state space formulation, we assume that each observed log-

cumulative claim value 𝒚𝒕 = 𝐥𝐨𝐠 (𝑪𝒊,𝒋) at cell(𝒊, 𝒋), where 𝒕 = 𝒊 + 𝒋 (calendar 

year), is generated as a noisy measurement of the latent state 𝜽𝒕: 

𝒚𝒕 = 𝜽𝒕 + 𝝊𝒕 ,                𝝊𝒕 ~ 𝑵 (𝟎, 𝑹)                                             (𝟑) 

where: 

• 𝒚𝒕∈ ℝ is the observed log-transformed cumulative claim at development 

cell(𝒊, 𝒋), 

• 𝝊𝒕 ~ 𝑵 (𝟎, 𝑹) is the observation noise (i.e., deviation of actual claims 

from the latent trend), 

• 𝑹 > 𝟎 is the observation variance, capturing volatility in the observed 

claims not explained by the calendar year effect. 

In practice, each calendar year  𝒕  corresponds to a diagonal in the claims 

triangle and may contain multiple observed cell(𝒊, 𝒋) where 𝒊 + 𝒋 = 𝒕. In such 

cases, the equation generalizes to: 

𝒚𝒕 = 𝟏𝒏𝒕 𝜽𝒕 + 𝝊𝒕 ,      𝝊𝒕 ~ 𝑵 (𝟎, 𝑹𝑰𝒏𝒕)                                               (𝟒) 

Here: 

• 𝒚𝒕∈ ℝ𝑛𝑡  is a vector of observed log claims for calendar year 𝒕, 

• 𝟏𝒏𝒕 is a column vector of ones, 

• 𝝊𝒕 is a vector of independent observation errors. 

This structure assumes all claims in the same calendar year are influenced by a 

common latent driver 𝜽𝒕, justifying the use of a shared state for each diagonal. 

5.2. Model Assumptions 

The scalar SSM used in this research is built upon a set of assumptions 

that ensure both theoretical soundness and computational tractability. These 

assumptions are crucial for the effective application of the Kalman Filter in 

estimating the latent development process and forecasting future claims 

liabilities. 
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5.2.1. Linearity of System and Observation Relationships 

The model assumes that the underlying dynamics of the claims process, 

as well as the link between the latent states and the observed cumulative claims, 

are linear. This linearity allows for efficient state estimation using recursive 

filtering techniques. It also reflects a practical simplification that aligns with 

many existing actuarial reserving models, such as Chain Ladder and Mack 

models. 

5.2.2. Normally Distributed Innovations 

The disturbances affecting both the system dynamics and the 

measurement process are assumed to be Gaussian: 

• The state innovation 𝝎𝒕 ~ 𝑵(𝟎, 𝑸), representing unobserved changes 

in the latent process over time. 

• The observation noise  𝝊𝒕 ~ 𝑵 (𝟎, 𝑹), capturing deviations of the 

observed claims from the underlying latent structure. 

These Gaussian assumptions facilitate analytical derivation of the 

Kalman Filter updates and enable closed-form expressions for forecast error 

variances. 

5.2.3. Time-Invariant Variance Parameters 

The variances 𝑸 and 𝑹 are assumed to be constant across all time 

periods. This implies homoscedasticity of both the system and observation 

noise, making the model stable and interpretable. Extensions to time-varying 

variance structures can be considered for modeling volatility dynamics but are 

beyond the scope of the current research. 

5.2.4. Mutual Independence of Noise Terms 

It is assumed that the process noise 𝝎𝒕 and observation noise 𝝊𝒕 are 

mutually independent and uncorrelated across time: 

• 𝑪𝒐𝒗(𝝎𝒕, 𝝎𝒔) = 𝟎 for 𝒕 ≠ 𝒔, 

• 𝑪𝒐𝒗(𝝊𝒕 , 𝝊𝒔 ) = 𝟎 for 𝒕 ≠ 𝒔, 

• 𝑪𝒐𝒗(𝝎𝒕 , 𝝊𝒕 ) = 𝟎 for 𝒕, 𝒔. 
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This ensures that system evolution is not influenced by the measurement 

process, and vice versa, which is a standard requirement for unbiased filtering. 

5.2.5. Prior Distribution of the Initial State 

The initial latent state 𝜽𝟎 is assumed to follow a normal distribution with 

known or estimated mean and variance: 

𝜽𝟎~𝑵(𝒎𝟎, 𝑷𝟎) 

These prior captures the uncertainty in the latent process before any data 

is observed and are updated recursively as new information becomes available. 

5.2.6. Calendar-Year-Based Indexing 

Each observation is indexed by calendar year 𝒕 = 𝒊 + 𝒋, and multiple 

observations from the same diagonal (i.e., same calendar year) are assumed to 

share a common latent factor 𝜽𝒕. This structure allows the model to capture 

shared macroeconomic and regulatory influences affecting claims across 

accident and development years. 

5.2.7. Log-Transformation of Claims 

To achieve variance stabilization and approximate normality of the error 

distribution, cumulative claim amounts 𝑪𝒊.𝒋 are log-transformed before being 

modeled. This transformation is a common preprocessing step in actuarial 

modeling and improves the fit of the Gaussian assumptions for 𝝊𝒕. 

5.3. Kalman Filter Recursions 

The Kalman Filter is a recursive estimation algorithm used to infer the 

hidden state variables 𝜽𝒕 of a dynamic system from noisy observations 𝒀𝒕. In 

the context of scalar State Space Models for claims reserving, it enables real-

time updating of latent calendar-year effects as new diagonals of the claims 

triangle become available. These latent estimates are then used for future claim 

projections and reserve calculation. 

Given the assumptions outlined previously; specifically, linearity, 

normality of innovations, and independence, the Kalman Filter provides the 

Minimum Mean Square Error (MMSE) estimator for the latent states. It 

operates in two main steps: prediction and update. 
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5.3.1. Step 1: Prediction 

Before observing data at time 𝒕, the filter generates a prior estimate 

�̂�𝒕|𝒕−𝟏 based on the previous state and its variance: 

�̂�𝒕|𝒕−𝟏 = �̂�𝒕−𝟏|𝒕−𝟏                                                                            (𝟓) 

𝑷𝒕|𝒕−𝟏 = 𝑷𝒕−𝟏|𝒕−𝟏 + 𝑸                                                                     (𝟔) 

Where: 

• �̂�𝒕|𝒕−𝟏 is the predicted (prior, filtered) state for time 𝒕, 

• 𝑷𝒕|𝒕−𝟏 is the associated prior variance, 

• 𝑸 is the system noise variance, representing uncertainty in the latent 

development trend. 

5.3.2. Step 2: Update 

Once the observations for calendar year 𝒕 are available, the filter updates 

the prior estimates based on the average of the log-transformed claims: 

Let �̅�𝒕 be the average of 𝒏𝒕log-cumulative claims in diagonal 𝒕, then the update 

step is: 

𝑲𝒕 =
𝑷𝒕|𝒕−𝟏

𝑷𝒕|𝒕−𝟏 +
𝑹
𝒏𝒕

                                                                             (𝟕) 

�̂�𝒕|𝒕 = �̂�𝒕|𝒕−𝟏 + 𝑲𝒕(�̅�𝒕 − �̂�𝒕|𝒕−𝟏)                                                     (𝟖) 

𝑷𝒕|𝒕 = (𝟏 − 𝑲𝒕) 𝑷𝒕|𝒕−𝟏                                                                     (𝟗) 

Where: 

• 𝑲𝒕 is the Kalman gain, balancing prior belief with new information, 

• �̂�𝒕|𝒕 is the posterior (updated) estimate of the state, 

• 𝑷𝒕|𝒕 is the posterior variance, reduced due to the incorporation of 

observed data. 

 

 



Scientific Journal for Financial and Commercial Studies and Research 6(2)1 July 2025 

Dr. Ahmed Samy Said El Azab; Dr. Raghda Ali Abdelrahman and Dr. Zahra Salah Eldin 

- 1069 - 
 

These recursions are initialized with a prior distribution of 

𝜽𝟎~𝑵(𝒎𝟎, 𝑷𝟎), where 𝒎𝟎 and 𝑷𝟎 are either subjectively chosen based on 

expert judgment or empirically estimated from early triangle data. This is 

shown in figure 5.1 below: 

Figure 5.1. Kalman Filterings Recursions for SSM  

In this research, the hyperparameters 𝑸 and 𝑹, as well as the initial state 

parameters 𝒎𝟎 and 𝑷𝟎, are estimated using maximum likelihood. The log-

likelihood function is constructed based on the sequence of Kalman filter 

prediction errors and their variances, and optimization is performed numerically 

over the observed upper triangle. This approach ensures consistency of the 

estimators under the assumed Gaussian model structure and enables data-driven 

calibration of model uncertainty. 

5.4. Forecasting and Reserve Estimation 

Once the latent states 𝜽𝒕 have been estimated using the Kalman Filter, 

the model can be used to forecast future cumulative claims and estimate the 

associated reserves. This step is particularly crucial for projecting IBNR claims 

in the lower triangle of the run-off table. 

5.4.1. Forecasting Future States 

To forecast cumulative claims in the lower triangle (i.e., 𝒊 + 𝒋 > 𝑻, 

where 𝑻 is the last observed calendar year), we first project the latent states 𝜽𝒕 

forward using the last available estimate: 

�̂�𝒕|𝑻 = �̂�𝒕−𝟏|𝑻, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒕 > 𝑻                                                         (𝟏𝟎) 

𝑷𝒕|𝑻 = 𝑷𝒕−𝟏|𝑻 + 𝑸                                                                           (𝟏𝟏) 



Scientific Journal for Financial and Commercial Studies and Research 6(2)1 July 2025 

Dr. Ahmed Samy Said El Azab; Dr. Raghda Ali Abdelrahman and Dr. Zahra Salah Eldin 

- 1070 - 
 

This random walk prediction assumes no further information is 

available beyond time 𝑻, and therefore propagates the most recent latent 

calendar year effect forward with increasing uncertainty. 

5.4.2. Forecasting Log-Transformed Claims 

Each unobserved cell (𝒊, 𝒋) in the lower triangle is associated with 

calendar year 𝒕 = 𝒊 + 𝒋. The model forecasts the log-cumulative claim as: 

�̂�𝒊,𝒋 = �̂�𝒕|𝑻                                                                              (𝟏𝟐) 

These forecasts are then back-transformed to the original scale using the 

exponential function: 

�̂�𝒊,𝒋 = 𝒆𝒙𝒑(�̂�𝒊,𝒋) = 𝒆𝒙𝒑(�̂�𝒕|𝑻)                                                      (𝟏𝟑) 

5.4.3. Forecasting Incremental Claims and IBNR 

The incremental forecast �̂�𝒊,𝒋 is calculated by differencing the predicted 

cumulative claims: 

�̂�𝒊,𝒋 = �̂�𝒊,𝒋 − �̂�𝒊,𝒋−𝟏                                                                        (𝟏𝟒) 

The total IBNR reserve is then given by summing these forecasted incremental 

claims across all unobserved cells: 

𝑰𝑩𝑵�̂� = ∑ �̂�𝒊,𝒋

𝒊+𝒋>𝑻

                                                                          (𝟏𝟓) 

This sum represents the best estimate of outstanding liabilities not yet reported, 

based on the latent structure inferred from the observed data. 

The MSEP for the cell (𝒊, 𝒋) is given by: 

𝑴𝑺𝑬𝑷(𝑪𝒊,𝒋) = 𝔼 [(𝑪𝒊,𝒋 − �̂�𝒊,𝒋)
𝟐

]                                                 (𝟏𝟔) 

Since the scalar model operates on log-transformed data 𝒚𝒊,𝒋 =

𝒍𝒐𝒈(𝑪𝒊,𝒋), and �̂�𝒊,𝒋 = �̂�𝒕|𝑻 for  𝒕 = 𝒊 + 𝒋, the MSEP is computed on the 

logarithmic scale and then transformed back: 

𝑴𝑺𝑬𝑷(𝑪𝒊,𝒋) ≈ [𝒆𝒙𝒑 (�̂�𝒕|𝑻 +
𝟏

𝟐
𝑷𝒕|𝑻)]

𝟐

− [𝐞𝐱 𝐩(�̂�𝒕|𝑻)]
𝟐

                              (𝟏𝟕) 
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This error quantification provides a key metric for comparing the 

predictive performance of the SSM to alternative models (e.g., Mack), 

particularly in out-of-sample validations. Moreover, MSEP can be used to 

construct prediction intervals for reserve risk management in regulatory 

frameworks such as Solvency II or IFRS 17. 

5.4.4. Prediction Intervals and Uncertainty Quantification 

Given that each forecasted �̂�𝒕|𝑻 is associated with an uncertainty 

measure 𝑷𝒕|𝑻, the forecasted cumulative claim �̂�𝒊,𝒋 can be considered log-

normally distributed. Approximate (1 − 𝛼)% confidence intervals for each cell 

can be derived as: 

�̂�𝒊,𝒋
𝒍𝒐𝒘𝒆𝒓 = 𝐞𝐱𝐩(�̂�𝒕|𝑻 − 𝒛𝜶/𝟐√𝑷𝒕|𝑻 ) ,     �̂�𝒊,𝒋

𝒖𝒑𝒑𝒆𝒓
= 𝐞𝐱𝐩(�̂�𝒕|𝑻 + 𝒛𝜶/𝟐√𝑷𝒕|𝑻 ) ,  

Where 𝒛𝜶/𝟐 is the standard normal quantile (e.g., 1.96 for a 95% confidence 

interval). 

To evaluate the robustness of the proposed scalar SSM with Kalman 

filtering, we conduct a comparative analysis against the widely used Mack 

model. This assessment highlights the advantages of the SSM’s dynamic 

structure over the static assumptions of the Mack approach. The following 

section presents the empirical application to real insurance data and compares 

the predictive performance of both models. 

6. Empirical Analysis 

6.1. Data Description 

The empirical investigation employs cumulative paid claims data from 

a comprehensive motor insurance portfolio underwritten by a non-life insurer 

in Egypt. The data span accident years 2014 – 2024 and cover development up 

to 11 periods. The claims triangle exhibits a typical lower-triangular structure 

due to right-truncation in more recent years. 
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Table 6.1.1. The cumulative amounts of paid claims 

 0 1 2 3 4 5 6 7 8 9 10 

2014 11,388,717 18,064,868 18,669,044 18,870,664 18,878,975 18,926,173 19,221,296 19,989,862 21,143,426 22,200,597 22,206,147 

2015 14,975,638 23,096,740 24,244,007 24,596,727 24,719,711 24,744,430 24,868,153 25,116,834 25,141,951 25,267,661  

2016 16,538,847 23,695,247 24,315,801 24,537,433 24,782,808 24,906,722 25,155,789 25,281,568 25,597,587   

2017 22,243,117 30,946,718 31,080,280 31,435,990 31,463,255 33,508,366 33,843,450 34,012,667    

2018 28,773,616 38,248,068 38,576,589 38,615,165 41,148,887 41,354,631 41,579,187     

2019 36,862,626 48,166,062 48,659,476 48,781,125 48,866,484 48,890,917      

2020 64,215,504 84,670,349 84,566,050 84,696,660 84,705,129       

2021 84,869,292 107,982,401 108,839,270 108,893,690        

2022 101,916,380 118,029,969 118,813,223         

2023 112,081,508 137,324,503          

2024 160,967,085           

Two models are implemented: 

• A Scalar State Space Model (SSM) combined with Kalman filtering 

and smoothing following the framework of (Chukhrova & Johannssen, 

2017) and (Selukar, 2025). 

• The Mack model, a distribution-free stochastic Chain Ladder approach 

(Mack, 1993), used as a benchmark. 

6.2. SSM Model Diagnostics and State Dynamics 

To evaluate the internal mechanics of the SSM, the cumulative claims 

data were first reshaped into a long format, removing missing and zero values. 

A logarithmic transformation was then applied to stabilize variance and 

linearize growth patterns. The resulting log-transformed series was converted 

into a univariate time series object, forming the input for the SSM estimation. 

A scalar SSM with a local level component was fitted to the log-

transformed cumulative claims using the KFAS package in R. The model 

specification assumes a random walk for the latent state (i.e., a first-degree 

trend), where the state noise variance 𝑸 and observation noise variance 𝑹 are 

treated as unknown and estimated via maximum likelihood. Initial values for 

the optimization are provided in log scale. Once fitted, the Kalman filter and 

smoother are applied to extract both the filtered and smoothed estimates of the 

latent state and signal components. 

At the final observed cell in the claims triangle (Accident Year 2024, 

Development Year 0), the SSM estimated a smoothed state of 18.842 on the 

logarithmic scale. When exponentiated, this corresponds to approximately EGP 

152 million, representing the model’s estimate of the latest cumulative paid 

claim after accounting for both observed data and prior trend evolution. This 

estimate reflects the Kalman filter’s ability to temper irregular fluctuations, 

offering a balanced value that adheres to the broader development pattern. 
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The actual observed value is EGP 161 million, or log ≈ 18.89671, 

which is higher than the smoothed estimate. This illustrates how the Kalman 

filter tempers sudden deviations to maintain consistency with the underlying 

trend. 

The smoothed estimate carries a standard error of 0.065, yielding a 

95% confidence interval of approximately [EGP 134 million, EGP 173 

million]. This range reflects the model’s uncertainty and forms the starting 

point for forward simulations and IBNR reserve projections. 

To assess the internal consistency and assumptions of the State Space 

Model, a diagnostic table in Table 6.2.1 and residual distribution plots in Figure 

6.2.1 were produced. These diagnostics summarize the filtering behavior of the 

Kalman algorithm applied to the log-transformed cumulative claims series. 

Table 6.2.1. State Space Model Diagnostics: Filtered Estimates and Residual 

Components 

T 

Observed 

𝒚𝒕 

Filtered 

State     �̂�𝒕 

Posterior 

Variance 

 �̂�𝒕 

Observation 

Noise      

𝓥𝒕 = 𝒚𝒕 − 𝜽𝒕 

Next 

State 

𝜽𝒕+𝟏 

State Noise 

𝜽𝒕+𝟏 − 𝜽𝒕 

1 16.2481 16.3721 0.004271 -0.1240 16.6276  
2 16.7095 16.6276 0.003442 0.0819 16.7144 0.2555 

3 16.7424 16.7144 0.003385 0.0280 16.7435 0.0868 

4 16.7531 16.7435 0.003381 0.0096 16.753 0.0291 

5 16.7536 16.753 0.003381 0.0006 16.7611 0.0094 

6 16.7561 16.7611 0.003381 -0.0050 16.7797 0.0082 

7 16.7715 16.7797 0.003381 -0.0081 16.8150 0.0186 

8 16.8107 16.815 0.003381 -0.0042 16.8589 0.0353 

9 16.8668 16.8589 0.003381 0.0079 16.8866 0.0440 

10 16.9156 16.8866 0.003381 0.0290 16.8546 0.0277 

The filtered state estimates �̂�𝒕 in Table 6.2.1 closely track the observed 

values 𝒚𝒕, with small residuals 𝓥𝒕 mostly ranging between –0.01 and +0.03, 

indicating tight model fit. The initial residual at 𝑡 = 1 is higher (–0.124), as 

expected due to limited prior information 

The posterior variance �̂�𝒕 begins at 0.00427 and quickly stabilizes to 

0.00338 from 𝑡 = 4  onward, reflecting increased model certainty as more data 

is processed. 
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The state innovation 𝝎𝒕 varies over time, peaking at 0.2555 at 𝑡 = 2, 

suggesting a significant adjustment in the early state trajectory. Afterward, 

innovations remain moderate (e.g., 0.0082 to 0.0440), supporting a smooth 

evolution of the latent process. 

Figure 6.2.1. Diagnostic Plots for Noise Terms in State Space Model  

These numerical patterns are reinforced visually in Figure 6.2.1. The 

top panels show histograms of 𝓥𝒕 and 𝝎𝒕, both centered around zero, consistent 

with the expected behavior of normally distributed residuals. The bottom panels 

present Q-Q plots comparing empirical quantiles to the theoretical normal 

distribution. While minor deviations appear in the tails, especially for state 

noise, the overall shape supports the Gaussian assumptions underlying the 

Kalman filter. Together, the table and figure validate the statistical behavior of 

the residuals and confirm the appropriateness of the SSM framework for 

modeling and forecasting cumulative claims. 

6.3. Monte Carlo-Based IBNR Estimation via State Space Modeling 

A Monte Carlo simulation using the scalar SSM was performed to 

estimate IBNR reserve uncertainty. Based on 10,000 simulated claim paths, the 

model used a process noise variance of 𝑸 = 𝟎. 𝟎𝟏𝟏𝟗𝟓 and measurement noise 

variance of 𝑹 = 𝟎. 𝟎𝟎𝟓𝟖𝟎. Simulated cumulative claims were transformed into 

incremental values, and total reserves were computed for each run. The 

resulting distribution was summarized with 75% and 95% confidence intervals, 

capturing the full stochastic variability in future claim development. 
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Table 6.3.1 and Figure 6.3.1 present the results of the IBNR reserve 

estimation using Monte Carlo simulation under the scalar SSM. The simulation, 

based on 10,000 stochastic claim paths, yielded a point estimate of EGP 207.99 

million. Confidence intervals widen substantially with increasing confidence 

levels from [EGP 59.5M, 378.1M] at 75% to [EGP 30.3M, 726.4M] at 95%. 

This widespread highlight the considerable uncertainty embedded in future 

claim developments, particularly under high-risk tolerance scenarios. 

Table 6.3.1. Monte Carlo-Based IBNR Reserve Estimates with Multiple 

Confidence Levels 

Statistic Lower Bound Upper Bound 

Point estimate (Mean) 207,989,566 

75% Confidence Interval 59,497,226 378,134,315 

95% Confidence Interval 30,269,498 726,397,843 

Figure 6.3.1 illustrates the full empirical distribution of the simulated 

reserves. The density curve exhibits clear positive skewness, which is expected 

given the nature of insurance claims. This skewness arises from two key factors: 

(1) the log-normal structure of the SSM, where latent log-claims are 

exponentiated, naturally producing right-skewed distributions, and (2) the 

underlying characteristics of claim development, where rare but large claims 

can significantly affect the reserve total. The sharp peak and long right tail 

reflect a high concentration of typical outcomes with a small probability of 

extreme values. 

The overlayed vertical lines show the 75% (blue dashed), 95% 

(orange dotted), and 97.5% (red dot-dash) confidence intervals, while the 

green solid line marks the mean reserve. As these intervals widen, especially 

in the upper tail, they capture increasingly extreme but plausible 

development scenarios. These results validate the Monte Carlo approach 

as a powerful tool to quantify full reserve uncertainty, offering a richer and 

more risk-sensitive view than point estimates alone. The skewed shape of 

the distribution reinforces a key insight of this research: actuarial reserving 

must account for tail risk, especially under regulatory frameworks such as IFRS 

17 or Solvency II. 
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Figure 6.3.1. Empirical Distribution of IBNR Reserves from Monte Carlo 

Simulation under SSM 

Thus, this simulation-based reserve distribution not only quantifies the 

central tendency but also provides a practical risk measure, enabling insurers to 

determine reserve levels at different confidence thresholds and to justify those 

decisions in actuarial reports, regulatory submissions, and internal risk 

governance. 

Table 6.3.2 presents the forecasted incremental claims generated using 

the SSM. The results reflect a logical development structure across accident 

years, with recent cohorts such as 2024 and 2023 exhibiting high initial 

increments (e.g., EGP 153.6 million and EGP 837,838, respectively), followed 

by a gradual decline over subsequent development years. This pattern suggests 

a front-loaded settlement process, consistent with accelerated claims handling 

in more recent years. In contrast, older accident years display significantly 

smaller forecasted values, primarily concentrated in the later development 

periods, indicating the maturity of these claim cohorts and minimal outstanding 

liabilities. 
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Table 6.3.2. Forecasted Incremental Claims Triangle Estimated Using the Scalar SSM 

 0 1 2 3 4 5 6 7 8 9 10 

2014 - - - - - - - - - - - 

2015 - - - - - - - - - - 740,061 

2016 - - - - - - - - - 1,224,829 1,684,930 

2017 - - - - - - - - 933,521 1,144,379 1,263,476 

2018 - - - - - - - 695,988 1,389,155 1,049,659 1,679,570 

2019 - - - - - - 699,378 656,905 695,967 989,894 497,348 

2020 - - - - - 1,028,977 1,138,907 868,479 1,765,332 1,251,908 1,344,226 

2021 - - - - 789,463 839,632 419,320 976,123 1,024,057 998,892 973,377 

2022 - - - 1,082,957 730,640 787,754 1,126,959 342,625 1,080,453 1,238,540 1,350,956 

2023 - - 837,838 915,280 1,192,258 884,273 775,924 1,159,550 1,152,878 1,173,345 709,226 

2024 - 153,643,738 774,798 687,295 1,035,579 1,233,515 1,127,951 920,138 1,306,418 1,262,522 692,401 

Summing up, all values in the lower triangle yield a total forecasted 

IBNR reserve of approximately EGP 208 million. This figure represents the 

insurer’s best estimate of outstanding liabilities. The distribution of this reserve 

across cohorts and development periods confirms both the timely runoff of 

historical claims and the increasing immediacy of settlement in newer 

portfolios, reinforcing the model’s capacity to adapt to varying development 

dynamics. 

In conclusion, the Monte Carlo simulation results provide a robust and 

nuanced assessment of reserve uncertainty under the SSM. While the point 

estimate serves as a central benchmark, the wide and positively skewed 

distribution of potential reserve outcomes highlight the importance of modeling 

variability and extreme scenarios explicitly. By incorporating both process and 

observation noise, the simulation captures the full stochastic behavior of claim 

development, offering a valuable tool for reserve adequacy analysis. These 

insights highlight the relevance of stochastic reserving techniques in modern 

actuarial practice, particularly when responding to regulatory demands for risk-

based capital assessment and solvency management. 

6.4. Benchmarking the Scalar State Space Model Against the Mack 

Model 

The Mack Chain Ladder model was applied to the same cumulative paid 

claims triangle for benchmarking against the SSM. The summary in Table 6.4.1 

shows the development-to-date ratios, ultimate claim projections, and 

corresponding IBNR reserves by accident year, along with the standard errors 

and coefficients of variation. 
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Table 6.4.1. Mack Model Results by Accident Year 

Year Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR) 

2014 22,206,147 1.00 22,206,147 - -  

2015 25,267,661 1.00 25,273,978 6,317 1,023,830 162.08 

2016 25,597,587 0.97 26,258,329 660,741 1,427,115 2.16 

2017 34,012,667 0.95 35,631,529 1,618,862 2,060,327 1.27 

2018 41,579,187 0.94 44,112,648 2,533,461 2,498,749 0.99 

2019 48,890,917 0.93 52,313,788 3,422,871 2,855,655 0.83 

2020 84,705,129 0.92 91,815,028 7,109,899 4,823,429 0.68 

2021 108,893,690 0.91 119,351,671 10,457,981 6,336,224 0.61 

2022 118,813,223 0.91 130,731,400 11,918,178 6,853,163 0.58 

2023 137,324,503 0.90 152,590,410 15,265,907 7,924,305 0.52 

2024 160,967,085 0.71 228,246,115 67,279,030 16,337,929 0.24 

Note: CV(IBNR) is not reported for 2014 and 2015 due to negligible or negative 

IBNR, which leads to mathematically invalid or misleading ratios. 

The model forecasts an aggregate IBNR reserve of approximately EGP 

120.27 million, with a corresponding Mack standard error of EGP 40.59 

million, resulting in an overall coefficient of variation (CV) of 0.337. These 

figures indicate moderate forecast uncertainty, though lower than previously 

reported, reflecting improvements in model fit and data consistency. 

At the accident year level, the IBNR estimates show a logical increasing 

trend for more recent years, with the highest IBNR observed in 2024 at EGP 

67.28 million, due to limited claims development and high immaturity. The 

CV(IBNR) correspondingly declines from 2.16 in 2016 to 0.24 in 2024, 

demonstrating growing confidence in reserve adequacy as more development 

data becomes available. 

Figure 6.4.1. Mack model diagnostics and development patterns 
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Figure 6.4.1 illustrates the diagnostic outputs of the Mack model. The 

top-left panel compares the forecasted and latest cumulative claims across 

origin periods, highlighting significant reserve contributions from recent 

accident years. The top-right panel depicts the development of claims by origin 

period, showing relatively stable and parallel growth trajectories. The lower 

panels display standardized residual plots across various dimensions—fitted 

values, development years, origin years, and calendar years. While residuals 

appear mostly centered around zero, mild heteroscedasticity and a downward 

trend in calendar period residuals are evident, suggesting potential structural 

effects (e.g., inflation, changes in claim settlement practices) not explicitly 

captured by the Mack model. 

Overall, the revised results confirm the robustness of the Mack model 

as a benchmark for stochastic reserving. However, the observed residual 

patterns highlight the model’s limitations, particularly in capturing time-

varying or systemic changes, and support the consideration of more dynamic 

frameworks such as State Space Models. 

Next, the Scalar SSM is compared to the Mack model to evaluate the 

accuracy and reliability of its reserve estimates, using the Mack model as a 

benchmark for stochastic reserving. 

Key metrics; total reserves, MSEP, and coefficient of variation; are 

evaluated at both aggregate and accident-year levels. While the Mack model 

assumes independence across years, the SSM accounts for time dynamics via 

Kalman filtering. The comparison highlights not only the consistency of the 

SSM with industry benchmarks but also its added value in capturing uncertainty 

and development volatility. 

Table 6.4.2 presents a detailed comparison between the two models by 

accident year. While both models agree on the absence of reserves for fully 

developed accident years, substantial divergence emerges across other 

development periods. Notably, the Scalar SSM produces higher reserve 

estimates in several origin years, particularly recent ones, where process 

uncertainty and structural shifts are more pronounced. 
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Table 6.4.2. Comparative Results: Scalar SSM vs. Mack Model 

Origin Year SSM_Reserve SSM_MSEP SSM_CV Mack_Reserve Mack_MSEP Mack_CV 

1 0 0 ------- 0 0 ------- 

2 740061.04 1.4758E+15 51.91009 6316.92 1.0482E+12 162.07752 

3 2909759.59 2.8677E+15 18.40383 660741.49 2.0367E+12 2.15987 

4 3341375.9 3.9156E+15 18.72716 1618861.99 4.2449E+12 1.2727 

5 4814371.82 4.95E+15 14.6138 2533460.86 6.2437E+12 0.9863 

6 3539491.3 5.8629E+15 21.63286 3422870.55 8.1548E+12 0.83429 

7 7397829.27 6.8228E+15 11.16549 7109899 2.3265E+13 0.67841 

8 6020864.15 7.3698E+15 14.25834 10457981.4 4.0148E+13 0.60587 

9 7740886.04 8.1522E+15 11.66395 11918177.7 4.6966E+13 0.57502 

10 8800572.41 8.7709E+15 10.64172 15265907 6.2795E+13 0.51909 

11 162684355 9.5582E+15 0.60096 67279029.7 2.6693E+14 0.24284 

More importantly, the SSM consistently reports significantly larger 

MSEP and CV values than the Mack model. For instance, in origin year 2, the 

SSM reports a CV of 51.91, while the Mack model’s CV exceeds 160 due to a 

near-zero reserve estimate, revealing instability in the Mack error structure 

when reserve values are small. In origin years 3 to 7, the SSM maintains 

elevated CVs between 11 and 22, capturing the stochastic variability inherent 

in emerging claims. In contrast, the Mack model yields progressively smaller 

CVs, which may misrepresent true uncertainty due to its assumption of 

independence and constant variance across development years. 

Even when the Mack model is supplemented with simulation 

techniques—such as normal approximation or parametric bootstrap, the 

resulting distribution is limited by the model’s closed-form variance 

assumptions and independence structure. These simulated reserves, while 

helpful for constructing confidence intervals, do not arise from an internally 

evolving data-generating process. In contrast, the SSM directly generates a full 

predictive distribution by propagating uncertainty through both the 

measurement and transition equations of the state space formulation. This end-

to-end simulation reflects complex time dynamics, captures volatility 

clustering, and incorporates parameter risk more comprehensively than post hoc 

sampling from a fixed variance. 
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In conclusion, the Scalar SSM distinguishes itself by providing not only 

flexible reserve projections but also an integrated stochastic framework that 

naturally produces scenario-consistent distributions. This enables actuaries and 

risk managers to assess downside risk, capital buffers, and reserve sufficiency 

under realistic development trajectories, something the Mack model, even with 

simulation, is not structurally designed to achieve. As modern reserving 

standards increasingly require probabilistic and forward-looking measures, the 

SSM offers a technically superior and future-proof alternative to traditional 

chain ladder methods. 

7. Conclusions and Recommendations 

This research has demonstrated the value of advanced stochastic 

reserving techniques, particularly the application of Scalar SSMs with Kalman 

filtering, in enhancing the accuracy and reliability of claims reserve estimates. 

When applied to real cumulative paid claims data from a comprehensive motor 

insurance portfolio in Egypt, the SSM consistently outperformed the 

benchmark Mack model in flexibility, responsiveness, and predictive 

robustness. 

Unlike the Mack model, which relies on static assumptions and limited 

distributional insight, the SSM incorporates latent state processes and 

recursively updates reserve estimates as new data becomes available. This 

dynamic capability is especially relevant in Egypt's insurance market, where 

structural changes, inflationary pressures, and evolving operational practices 

frequently disrupt stable claim development patterns. The full predictive 

distributions generated by the SSM allow for more comprehensive risk 

assessment, enabling actuaries to evaluate reserve adequacy across a wide range 

of plausible outcomes rather than relying solely on point estimates. 

The research also highlights the potential of Bayesian methods in 

actuarial reserving. Bayesian State Space Models extend the value of SSMs by 

enabling posterior distributions for parameters and reserves, enhancing 

transparency and supporting scenario-based decision-making. These models 

align with international frameworks such as Solvency II and IFRS 17, both of 

which emphasize forward-looking, uncertainty-aware actuarial practices. 
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Looking ahead, the increasing availability of granular, claim-level data 

opens the door for machine learning models such as gradient boosting, random 

forests, and neural networks. These tools can uncover complex nonlinearities 

and heterogeneity in claim behavior that are not captured by traditional 

techniques. However, their adoption must be accompanied by careful 

consideration of interpretability, governance, and regulatory acceptance, 

especially in markets subject to tight actuarial oversight. 

Recommendations for Egyptian insurers and regulators include: 

• Adopt SSMs for portfolios exhibiting volatility, structural change, or 

macroeconomic sensitivity. 

• Incorporate Bayesian frameworks to quantify uncertainty and support 

capital adequacy planning. 

• Invest in data infrastructure to enable the collection and use of high-

quality claim-level data for advanced modeling. 

• Develop governance frameworks to ensure model validation, 

transparency, and regulatory compliance. 

In conclusion, scalar SSMs offer a statistically rigorous, forward-

compatible solution for claims reserving in dynamic environments. Their 

adoption equips insurers with tools to meet the demands of IFRS 17, improve 

reserve accuracy, and enhance solvency resilience—positioning Egypt’s 

insurance sector for a more stable and analytically driven future. 
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تقدير مخصص المطالبات في التأمينات العامة بأسلوب ديناميكي باستخدام  "
 Kalman) ومرشح كالمان  (State Space Model) نموذج الحالة الكامنة

Filter) مع محاكاة مونت كارلو (Monte Carlo Simulation)  " 

 المستخلص

الحفاظ على الاستقرار المالي تعُد التقديرات الدقيقة لمخصص المطالبات عاملاً جوهريًا في  

لشركات التأمين العامة، خصوصًا في الأسواق التي تتعرض لتقلبات هيكلية وتخضع لتغيرات تنظيمية 

تحظى  (Mack) مستمرة. وعلى الرغم من أن النماذج الاكتوارية العشوائية التقليدية مثل نموذج ماك 

بانتشار واسع نظرًا لبساطتها التحليلية وشفافيتها، فإنها غالبًا ما تعجز عن تمثيل البيئات التي تتسم بعدم 

 .انتظام البيانات، وتغير أنماط تسوية المطالبات، والاضطرابات الاقتصادية

الكامنة الحالة  نموذج  الدراسة  هذه   (Scalar State Space Model – SSM) تقترح 

لمعالجة هذه التحديات. وقد تم تطبيق النموذج على بيانات  (Kalman Filter)مدعومًا بمرشح كالمان

النموذج  يسمح  حيث  المصري،  السوق  في  سيارات  تأمين  لمحفظة  التراكمية  المدفوعة  المطالبات 

المخصصات بشكل  التقويمية، ويُحدثّ تقديرات  المرتبطة بالسنوات  الكامنة  التأثيرات  بالتعرف على 

بيانات جديدة.  توفر  العشوائية  ديناميكي مع  المحاكاة  ، (Monte Carlo Simulation) وباستخدام 

 .ينُتج النموذج توزيعات تنبؤية كاملة للمخصصات المستقبلية، مما يوفر رؤية أشمل لمخاطر عدم اليقين

نموذج أن  ماك  نموذج  مع  المقارنة  نتائج  استقرارًا   SSM أظهرت  أكثر  تقديرات  يقُدمّ 

للمخصصات ويعكس بصورة أدق طبيعة المخاطر، خاصة في السنوات ذات الغموض العالي. على 

عكس نموذج ماك الذي يفترض ثبات أنماط التطور واستقلالية السنوات، يعالج نموذج الحالة الكامنة 

 .العمليات الزمنية المتغيرة والاضطرابات الهيكلية بشكل مباشر

نموذج  مزايا  الدراسة  المتطلبات   SSM تبُرز  مع  والمواءمة  والدقة،  التكيف،  حيث  من 

وغيره  IFRS 17 التنظيمية، مما يجعله أداة فعّالة لشركات التأمين التي تعمل ضمن أطر مثل معيار

من النظم الرقابية المرتكزة على التنبؤ بالمخاطر. وتوصي النتائج بتبنّي النماذج العشوائية الديناميكية 

في الممارسات الاكتوارية، خصوصًا في الأسواق الناشئة التي تعاني من تقلبات البيانات والتحولات  

 .الهيكلية

 الكلمات الدالة

عنها المُبلَّغ  وغير  المتكبدة  المطالبات  كالمان؛  مرشح  الكامنة؛  الحالة  ماك؛ (IBNR) نموذج  نموذج  ؛ 

 .المحاكاة بطريقة مونت كارلو؛ دقة التنبؤ؛ إعداد المخصصات بأسلوب احتمالي

 

 


