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A Bivariate Discrete Lindley Distribution and Applications 

Dr. Yasser Amer; Dr. Dina Abdel Hady and Dr. Rania Shalabi 

Abstract 

In this paper a bivariate discrete Lindley distribution has been derived from a discrete 

Lindely distribution using Farlie-Gumbel-Morgenstern copula. Some properties of this 

distribution such as probability generating function, conditional distributions, Pearson's 

correlation andreliability parameter are studied. To estimate the parameters of the 

distribution, three methods of estimation were presented. Method of moments, maximum 

likelihood estimation and two-step maximum likelihood. Finally, simulation study and a 

practical application were made on real data to show the appropriateness of the proposed 

distribution on these data. 

Keywords: Lindely distribution, Bivariate distribution, Discrete distribution, Maximum likelihood 

estimation, Method of moments,  Farlie-Gumbel-Morgenstern copula. 

1. Introduction 

The bivariate discrete data analysis is very common in many of practical applications. It 

arises in many real-life situations. For example, the number of insurance claims for two 

different reasons or the number of goals scored by two competing teams are a typical 

example of bivariate discrete data. 

Kundu and Nekoukhou (2018), Barbiero (2017), Nekoukhou and Kundu (2017), Ong and 

Ng (2013), Johnson et al. (1997) and  Kocherlakota and Kocherlakota (1992) have 

introduced different methods of the bivariate discrete data analysis. 

Recently, Lee and Cha (2015) introduced two general methods, (a) minimization and (b) 

maximization, with the aim of creating a class of bivariate discrete distributions. They 

detailed some special cases such as the bivariate Poisson distribution, the bivariate 

geometric distribution, the bivariate negative binomial distribution and the bivariate 

binomial distribution. Although this method can produce a very flexible class of bivariate 

discrete distributions, the jointly probability mass function (PMF) may not be in a 

simplified form in many cases . 

For this reason, the process of estimating unknown parameters becomes difficult in many 

cases. Another point,  the bivariate discrete distributions suggested by Lee and Cha (2015) 

may not have the same corresponding marginal distributions. For example, the bivariate 

discrete Poisson distribution they proposed does not contain the marginal Poisson 

distribution . 
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Chakraborty and Chakraborty (2015) presented various methods for generating discrete 

data from analogues from continuous probability distributions. Among these methods, if 

the primary continuous failure time X has a survival function S(x) = P(X > x), then the 

probability mass function (pmf) can be written for the discrete random variable associated 

with this continuous distribution 

P(X =  x) = Px   =  S(x) −  S(x +  1);     x =  0, 1, 2, . .. 

This method, which was introduced to create a new discrete distribution, has been applied 

recently to generate many discrete distributions. For example, Chakraborty and 

Chakravarthy (2012, 2014, 2015) examined the discrete version of gamma, Gumbel and 

power distributions, Nekoukhou,et al. (2013) presented discrete generalized Lindley 

distribution of a second type. Gómez-Déniz and Calderin (2011) analyzed the discrete 

Lindely distribution, Gómez-Déniz (2010) derived a new generalization of the geometric 

distribution using Marshall-Olkin scheme,  Krishna and Singh (2009) analyzed the 

discrete Burr distribution, Kemp (2008) constructed  the discrete half-normal distribution 

and Roy (2004) derived the discrete Rayleigh distribution.  

Using the method presented by Chakraborty (2015), a discrete Lindley distribution with 

a probability mass function (PMF) can be writtenas follows 

𝑃(𝑋 =  𝑥) =  (1 +
𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥 − (1 +

𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1) 

                      = (
𝜃

𝜃 + 1
) (1 − 𝑒−𝜃)(𝑥 + 𝑐1)𝑒

−𝜃𝑥  ;   𝑥 =  0, 1, 2, . . . , ∞             (1) 

where 𝑐1 =
(1−𝑒−𝜃)+𝜃(1−2𝑒−𝜃)

𝜃(1−𝑒−𝜃)
 

With cumulative distribution function (CDF) as follows, 

𝐹𝑥(𝑥, 𝜃) = 𝑃(𝑋 ≤  𝑥) = ∑(
𝜃

𝜃 + 1
) (1 − 𝑒−𝜃)(1 + 𝑐1)𝑒

−𝜃𝑖

𝑥

𝑖=0

 

                                            =  1 − (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)  ;     𝑥 =  0, 1, 2, . . . , ∞    (2) 

The previous result can be easily provenusing the finite geometric series, then the survival 

function will be, 

𝑆𝑥(𝑥, 𝜃) = 𝑃(𝑋 >  𝑥) = 1 − 𝐹𝑥(𝑥, 𝜃) =  (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)  ;     𝑥 =  0, 1, 2, . . . , ∞ 
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Regarding bivariate discretedistributions, Barbiero (2017) presented a discrete Weibull 

distribution using Farlie-Gumbel-Morgenstern (FGM) copula, which is the same capula 

that we will use to construct the bivariate distribution in this paper. 

This paper is outlined as follows, In Section 2, the proposed bivariate discrete 

Lindleydistribution by used Farlie-Gumbel-Morgenstern (FGM) copula and its properties 

are presented and discussed. Moreover, The methods of  moments, maximum likelihood 

estimation and two-step maximum likelihoodare determined in Section 3;  Section 4 

presents a simulation study assessing the performance of the estimators  andcomparison 

between the three methods of estimation; whereas in Section 5 an application to real data 

is provided ; Finally, in Section 6, some concluding remarks are given. 

2. The Bivariate Discrete Lindley Distribution 

In this section, we introduce the bivariate discrete Lindleydistribution, by specifying 

itscdf andpmf, and then derive some mathematical properties. 

2.1. Definition 

A bivariate discrete Lindley distribution (BDL) can be obtained by linking together two 

discrete Lindley distributions 𝐹𝑥(𝑥, 𝜃), 𝐹𝑦(𝑦, 𝛼) via the Farlie-Gumbel-Morgenstern 

(FGM) copula(Farlie 1960) with parameter−1 ≤ β ≤ 1.The bivariate FGM copula is 

givenby 

C(u, v)  =  uv [1 + β(1 −  u)(1 − v)], u, v ∈  [0, 1]via the parameter β. 

If β > 0, the FGM copula provides positive dependence; if β < 0, it returns negative 

dependence; when  β is zero, it reduces to the independence copula.  

Fredricks and Nelsen (2007) drived the formula for Spearman’s and Kendall’s correlation 

coefficient as follows, 

𝜌Spearman = 12∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝑢 𝑑𝑣
1

0

1

0

− 3 =   
𝛽

3
 

𝜌Kendall = 4∫ ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣)
1

0

1

0

− 1 =  
2𝛽

9
 

and 
−𝛽

3
≤ 𝜌Spearman  ≤

−𝛽

3
 ,

−2𝛽

9
≤ 𝜌Kendall  ≤

−2𝛽

9
. 
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A bivariate distribution with discrete Lindley (BDL) margins X~ Fx(x, θ) and 

Y~ Fy(y, α), related by the FGM copula can be built by simply defining its bivariate 

survival function as 𝑆(𝑥, 𝑦) = 𝐶(𝑆𝑥(𝑥), 𝑆𝑦(𝑦)), 𝑥, 𝑦 = 0,1,2, … ,∞from which we get: 

𝑆(𝑥, 𝑦) = 𝑆𝑥(𝑥)𝑆𝑦(𝑦) [1 + 𝛽 (𝐹𝑥(𝑥)) (𝐹𝑦(𝑦))], 

              = (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) (1 +

𝛼 + 𝛼𝑦

𝛼 + 1
)𝑒−𝜃(𝑥+1)−𝛼(𝑦+1) 

[1 + 𝛽 (1 − (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼 + 𝛼𝑦

𝛼 + 1
) 𝑒−𝛼(𝑦+1))] , 𝛼, 𝜃 > 0    (3) 

and bivariate cdf given by  

𝐹(𝑥, 𝑦) = 1 − 𝑆𝑥(𝑥) − 𝑆𝑦(𝑦) + 𝑆(𝑥, 𝑦) 

= (1 − (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼 + 𝛼𝑦

𝛼 + 1
) 𝑒−𝛼(𝑦+1)) 

[1 + 𝛽 (1 +
𝜃 + 𝜃𝑥

𝜃 + 1
) (1 +

𝛼 + 𝛼𝑦

𝛼 + 1
) 𝑒−𝜃(𝑥+1)−𝛼(𝑦+1)] , 𝛼, 𝜃 > 0                      (4) 

The corresponding bivariate pmf is then given (see also Barbiero 2017) by recalling the 

relationship between bivariate pmf and cdf: 

𝑃(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) − 𝑆(𝑥 − 1, 𝑦) − 𝑆(𝑥, 𝑦 − 1) + 𝑆(𝑥 − 1, 𝑦 − 1) 

= 𝑃(𝑥)𝑃(𝑦)[1 + 𝛽 {(2𝐹𝑥(𝑥) − 𝑃(𝑥) − 1)(2𝐹𝑦(𝑦) − 𝑃(𝑦) − 1)}]                 (5) 

𝑃(𝑥, 𝑦) = (
𝜃𝛼

(𝜃 + 1)(1 + 𝛼)
) (𝑥 + 𝑐1)(𝑦 + 𝑐2)(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)𝑒−𝜃𝑥−𝛼𝑦 

[1 + 𝛽 (1 − (1 +
𝜃𝑥

𝜃 + 1
)𝑒−𝜃𝑥 − (1 +

𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼𝑦

𝛼 + 1
) 𝑒−𝛼𝑦

− (1 +
𝛼 + 𝛼𝑦

𝛼 + 1
) 𝑒−𝛼(𝑦+1))] (6) 

where 𝑐2 =
(1−𝑒−𝛼)+𝛼(1−2𝑒−𝛼)

𝛼(1−𝑒−𝛼)
 

Figures 1,2 show the 3-dimatintions plots for the pmf and cdf of BDL distribution with 

different 

value of 𝜃, 𝛼 𝑎𝑛𝑑 𝛽. 
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𝜽 = 𝟎. 𝟑, 𝜶 = 𝟏. 𝟓 𝒂𝒏𝒅  𝜷 = 𝟎. 𝟓                                                              𝜽 = 𝟎. 𝟓, 𝜶 = 𝟎. 𝟑 𝒂𝒏𝒅  𝜷 = −𝟎. 𝟓 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: plot 3-dimatintion for the pmf of BDL distribution 

 

 

 

𝜽 = 𝟎. 𝟑, 𝜶 = 𝟏. 𝟓 𝒂𝒏𝒅  𝜷 = 𝟎. 𝟓                                                   𝜽 = 𝟎. 𝟓, 𝜶 = 𝟎. 𝟑 𝒂𝒏𝒅  𝜷 = −𝟎. 𝟓 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: plot 3-dimatintion for the cdf of BDL distribution 
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2.2. The Bivariate Failure Rate 

The bivariate failure rate can be defined as 𝑟(𝑥, 𝑦)  =  𝑝(𝑥, 𝑦)/𝑆(𝑥, 𝑦), which assumes 

the following expression for the BDL distribution r.v., for  x = 0,1, … ; y = 0,1, …: 

𝑟(𝑥, 𝑦) =
(

𝜃𝛼

(𝜃+1)(1+𝛼)
) (𝑥 + 𝑐1)(𝑦 + 𝑐2)(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)

(1 +
𝜃+𝜃𝑥

𝜃+1
) (1 +

𝛼+𝛼𝑦

𝛼+1
) 𝑒−𝜃−𝛼

 

     

×
[[1 + 𝛽 (1 − (1 +

𝜃𝑥

𝜃+1
) 𝑒−𝜃𝑥 − (1 +

𝜃+𝜃𝑥

𝜃+1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼𝑦

𝛼+1
) 𝑒−𝛼𝑦 − (1 +

𝛼+𝛼𝑦

𝛼+1
) 𝑒−𝛼(𝑦+1))]]

[1 + 𝛽 (1 − (1 +
𝜃+𝜃𝑥

𝜃+1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼+𝛼𝑦

𝛼+1
) 𝑒−𝛼(𝑦+1))]

(7) 

Proposition 2.1. for the bivariate failure rate𝑟(𝑥, 𝑦), 

If  β =  0 ( x and y are independence), 𝑟(𝑥, 𝑦)is constant and equal to 

𝑟0 =
(

𝜃

𝜃+1
) (𝑥 + 𝑐1)(1 − 𝑒−𝜃)

(1 +
𝜃+𝜃𝑥

𝜃+1
)𝑒−𝜃

×
(

𝛼

𝛼+1
) (𝑦 + 𝑐2)(1 − 𝑒−𝛼)

(1 +
𝛼+𝛼𝑦

𝛼+1
)𝑒−𝛼

. 

And,  for β ≠ −1,we get 

lim
(𝑥,𝑦)→(∞,∞)

𝑟(𝑥, 𝑦) =
(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)

𝑒−𝜃−𝛼
  ,                                                                                     (8) 

lim
(𝑥,𝑦)→(0,0)

𝑟(𝑥, 𝑦) =
𝛼 𝜃 𝑐1 𝑐2(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)

(2𝜃 + 1)(2𝛼 + 1)e−θ−α
 

×
1 + 𝛽 [(

2𝜃+1

𝜃+1
) (

2𝛼+1

𝛼+1
) e−θ−α]

1 + 𝛽 [(1 − (
2𝜃+1

𝜃+1
) e−θ) (1 − (

2𝛼+1

𝛼+1
) e−α)]

 ,        (9) 

then  

(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)

𝑒−𝜃−𝛼
≤ 𝑟(𝑥, 𝑦)

≤
𝛼 𝜃 𝑐1 𝑐2(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)

(2𝜃 + 1)(2𝛼 + 1)e−θ−α
 ×

1 + 𝛽 [(
2𝜃+1

𝜃+1
) (

2𝛼+1

𝛼+1
) e−θ−α]

1 + 𝛽 [(1 − (
2𝜃+1

𝜃+1
) e−θ) (1 − (

2𝛼+1

𝛼+1
) e−α)]

 

2.3. Probability Generating Function 

Let X and Y be a pair of integer-valued random variables with joint distribution 𝑃(𝑋 =
𝑥, 𝑌 = 𝑦),then the bivariate probability generating function is given by 𝐺(𝑡, 𝑠) =
𝐸(𝑡𝑥𝑠𝑦). For the BDL distribution, the bivariate probabilitygenerating function is as 

follows: 
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𝐺(𝑡, 𝑠) =
𝑞1𝑞2(1 − 𝑒−𝜃)(1 − 𝑒−𝛼)[(1 −  𝑐1)𝑡𝑒

−𝜃 +  𝑐1][(1 −  𝑐2)𝑠𝑒
−𝛼 +  𝑐2]

[(1 − 𝑡𝑒−𝜃)(1 − 𝑠𝑒−𝛼)]2

+ 𝛽 𝑞1𝑞2(1 − 𝑒−𝜃)(1

− 𝑒−𝛼) {(
(1 −  𝑐1)𝑡𝑒

−𝜃 +  𝑐1

(1 − 𝑡𝑒−𝜃)2

−
𝜑1

𝑡𝑒−𝜃 + 𝑞1(1 − 𝑒−𝜃)𝜑2
𝑡

(1 − 𝑡𝑒−2𝜃)2
)(

(1 −  𝑐2)𝑠𝑒
−𝛼 +  𝑐2

(1 − 𝑠𝑒−𝛼)2

−
𝜑1

𝑠𝑒−𝛼 + 𝑞2(1 − 𝑒−𝛼)𝜑2
𝑠

(1 − 𝑠𝑒−2𝛼)2
)}             (10) 

where 

𝜑1
𝑡 = (𝑞1 −  𝑐1 + 1)𝑡2𝑒−4𝜃 + [ 𝑐1(3𝑞1 − 1) + 1]𝑡𝑒−2𝜃 +  𝑐1, 

𝜑2
𝑡 = (𝑐1

2 −  3𝑐1 + 2)𝑡2𝑒−4𝜃 − (2𝑐1
2 −  3𝑐1 − 1)𝑡𝑒−2𝜃 +  𝑐1

2, 

𝜑1
𝑠 = (𝑞2 −  𝑐2 + 1)𝑠2𝑒−4𝛼 + [ 𝑐2(3𝑞2 − 1) + 1]𝑠𝑒−2𝛼 +  𝑐2, 

𝜑2
𝑠 = (𝑐2

2 −  3𝑐2 + 2)𝑠2𝑒−4𝛼 − (2𝑐2
2 −  3𝑐2 − 1)𝑠𝑒−2𝛼 +  𝑐2

2, 

𝑞1 =
𝜃

𝜃+1
 and 𝑞2 =

𝛼

𝛼+1
. 

Proof 

The bivariate probability generating function is defined as: 

𝐺(𝑡, 𝑠) = 𝐸(𝑡𝑥𝑠𝑦) = ∑ ∑ 𝑡𝑥𝑠𝑦

∞

𝑦=0

∞

𝑥=0

𝑃(𝑥, 𝑦) 

Using equation )6(, we obtain 

𝐺(𝑡, 𝑠) = 𝐸(𝑡𝑥𝑠𝑦)

= 𝐸(𝑡𝑥)𝐸(𝑠𝑦) + 𝛽𝐸(𝑡𝑥[2𝐹𝑥(𝑥) − 𝑃(𝑥) − 1])𝐸(𝑠𝑦[2𝐹𝑦(𝑦) − 𝑃(𝑦) − 1]) 

Substituting from 1 and 2 and using the properties of the sum of the finite geometric 

series, we can get the result mentioned in 10. 

The probability generating functions of the marginal distributions P(X =  x) and P(Y =

 y) are G(t, 1)  =  E(tx) and G(1, s)  =  E(sy ), respectively. 

2.4. Conditional distributions 

The conditional distribution of  𝑌| 𝑋 =  𝑥  is 
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𝑃𝑦|𝑥(𝑦, 𝑥) =
𝑃(𝑥, 𝑦)

𝑃(𝑥)
 

                   = (
𝛼

(1 + 𝛼)
) (𝑦 + 𝑐2)(1 − 𝑒−𝛼)𝑒−𝛼𝑦 [1 

+ 𝛽 (1 − (1 +
𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥 − (1 +

𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1)) (1 − (1 +

𝛼𝑦

𝛼 + 1
) 𝑒−𝛼𝑦

− (1 +
𝛼 + 𝛼𝑦

𝛼 + 1
) 𝑒−𝛼(𝑦+1))]            (11) 

Moreover, the conditional expected value of 𝑌| 𝑋 =  𝑥  can be then easily computed and is 

equal to 

𝐸(𝑌| 𝑋 =  𝑥) = 𝐸(𝑌) + 𝛽([2𝐹𝑥(𝑥) − 𝑃(𝑥) − 1])𝐸([2𝐹𝑦(𝑌) − 𝑃(𝑌) − 1]) 

=
(1 + 2𝛼)𝑒−𝛼 − (1 + 𝛼)𝑒−2𝛼

(1 + 𝛼)(1 − 𝑒−𝛼)2
   

+ 𝛽 (
(1 + 2𝛼)𝑒−𝛼 + 𝛼𝑒−2𝛼 + (3𝛼 − 1)𝑒−3𝛼 − (2 + 6𝛼)𝑒−4𝛼 − (4𝛼 + 1)𝑒−5𝛼 + (𝛼 + 2)𝑒−6𝛼 + (1 + 𝛼)𝑒−7𝛼

(1 + 𝛼)(1 − 𝑒−𝛼)3(1 + 𝑒−𝛼)4
) 

(1 − (1 +
𝜃𝑥

𝜃 + 1
) 𝑒−𝜃𝑥 − (1 +

𝜃 + 𝜃𝑥

𝜃 + 1
) 𝑒−𝜃(𝑥+1))           (12) 

The conditional c.d.f P(Y ≥ y, |X = x), of  Y| X =  x can be derived easily and written as: 

𝑃(𝑌 ≤ 𝑦, |𝑋 = 𝑥)
= 𝐹𝑦(𝑦,𝛼) + 𝛽𝐹𝑦(𝑦,𝛼)𝑆𝑦(𝑦,𝛼){1 − 𝑝(𝑥) − 2𝐹𝑥(𝑥 − 1, 𝜃)}                (13) 

Note that ,we can get the same results for X| Y =  y using the same method. 

2.5. Simulation 

In order to simulate a sample from the BDL distribution with parameters θ and α we can  use  the 

following steps : 

1. Generate a random pair (u1, u2) from two independent uniform r.v.s in (0,1), 

u1~Unif(0,1) and u2~Unif(0,1); 

2. Put x = Fx
−1(u1) where Fx

−1(. )  denotes the quantile functions of  discrete Lindley 

distribution with parameter θ, i.e., x =
−ln (1−u1)

θ
 , with [. ] indicating the ceiling function. 

3. Put  P(Y ≥ y, |X = x) = u2 , we get  z =
2 u2

a+b
 

where a = 1 + β{1 − p(x) − 2Fx(x − 1, θ)}, b = [a2 − 4(1 − a)u2]
1

2  and z =
 Fy(y, α) 
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4. After solving aquadratic equation, put y = Fy
−1(z) where Fy

−1(. )  denotes the quantile 

functions of  discrete Lindley distribution with parameters α, i.e., y =
−ln (1−z)

α
 , with [. ] 

indicating the ceiling function. 

5. (x, y) is a random pair from the BDL distribution. 

 

2.6. Pearson's Correlations 

For a discrete Lindley distribution with parameter 𝜃, the expected value is written as: 

𝐸(𝑋) =
(1 + 2𝜃)𝑒−𝜃 − (1 + 𝜃)𝑒−2𝜃

(1 + 𝜃)(1 − 𝑒−𝜃)2
 

The variance is equal to 

𝑉(𝑋) =
(1 + 2𝜃)(1 + 𝜃)𝑒−𝜃 − (2𝜃2 + 4𝜃 + 2)𝑒−2𝜃 + (1 + 𝜃)𝑒−3𝜃

(1 + 𝜃)(1 − 𝑒−𝜃)4
, 

and the covariance Cov(X, Y)  between the two margins havethe followingexpression: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝛽𝐸([2𝐹𝑥(𝑋) − 𝑃(𝑋) − 1])𝐸([2𝐹𝑦(𝑌) − 𝑃(𝑌) − 1]) 

 

= 𝛽 (
(1 + 2𝜃)𝑒−𝜃 + 𝜃𝑒−2𝜃 + (3𝜃 − 1)𝑒−3𝜃 − (2 + 6𝜃)𝑒−4𝜃 − (4𝜃 + 1)𝑒−5𝜃 − (𝜃 + 2)𝑒−6𝜃 + (1 + 𝜃)𝑒−7𝜃

(1 + 𝜃)(1 − 𝑒−𝜃)3(1 + 𝑒−𝜃)4
) 

(
(1 + 2𝛼)𝑒−𝛼 + 𝛼𝑒−2𝛼 + (3𝛼 − 1)𝑒−3𝛼 − (2 + 6𝛼)𝑒−4𝛼 − (4𝛼 + 1)𝑒−5𝛼 + (𝛼 + 2)𝑒−6𝛼 + (1 + 𝛼)𝑒−7𝛼

(1 + 𝛼)(1 − 𝑒−𝛼)3(1 + 𝑒−𝛼)4
) (14) 

 

Then, Pearson's correlation coefficientρxy between the two margins can be easily 

calculated as; 

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑋𝑌)

√𝑉(𝑋)𝑉(𝑌)
                   (15) 

From (14), if the value of 𝛽 = 0, then the value of the correlation coefficient 𝜌𝑥𝑦 is equal 

to zero, which means the independence of the two variables, if the value of 𝛽 > 0, this 

indicates that the correlation is positive, and if the value of 𝛽 < 0 it is an negativerelation. 

2.7. Reliability parameter 

In reliability context inferences about R=P(Y<X), where X and Y have independent 

distributions, are a subject of interest. For example in mechanical reliability of a system, 

if X is the strength of a component which is subject to stress Y, then R is a measure of 

system performance. The system fails, if at any time the applied stress is greate than its 
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strength. Stress- strength reliability has been discussed in Kapur and Lamberson (1977). 

However, in some real life cases, strength or stress can have discrete distribution, for 

example, when the strength is the number of the products that factory produces and the 

stress is the number of the products that customers want to buy (Jovanović 2017). 

For the BDL distribution, the stress-strength parameter R = P(Y < 𝑋) can be computed 

as 

R = P(Y < 𝑋) = ∑ ∑ P(x, y)x
y=0

∞
x=0 with P(x, y) given by equation3, and has the 

following result: 

𝑅 = ∑ 𝑃(𝑦) 𝐹(𝑦, 𝜃)

∞

𝑦=0

+ 𝛽 ∑ 𝑃(𝑦) 𝐹(𝑦, 𝜃)

∞

𝑦=0

𝑆(𝑦, 𝜃){𝐹(𝑦, 𝛼) − 𝑃(𝑦) − 1}         (16) 

From the previous relationship, the value of R can be easily obtained, since these sums 

are the sum of infinite geometric sequences, but their expansion will be a large number 

of terms, and therefore it can be calculated numerically easily as shown in Table 1. 

Table (1)  The value of R at different values of the distribution parameters 

𝜷 

𝜽
= 𝟎. 𝟑, 

𝜶 = 𝟎. 𝟒 

𝜽
= 𝟎. 𝟒, 

𝜶 = 𝟎. 𝟑 

𝜽
= 𝟏. 𝟑, 

𝜶 = 𝟎. 𝟒 

𝜽
= 𝟏. 𝟓, 

𝜶 = 𝟏. 𝟔 

𝜽
= 𝟏. 𝟔, 

𝜶 = 𝟏. 𝟓 

-0.6 0.653 0.424 0.212 0.744 0.709 

-0.3 0.65 0.433 0.225 0.755 0.72 

0 0.648 0.441 0.237 0.766 0.731 

0.3 0.646 0.45 0.25 0.777 0.743 

0.6 0.644 0.459 0.263 0.787 0.754 

It is very obvious that the value of R increases with the increasing value of the parameter 

β for all combinations of parameters θ and α. From the Figure 3, it becomes clear that the 

relationship between both R and β is a linear relationship 
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Figure 3: The relationship between both R and β 

 

3. Estimation 

Several methods for estimating the parameters 𝜃, 𝛼and 𝛽 of the BDE distribution of equation 3 

can be envistigated, given a random sample (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑛 . Two versions of the method 

of moments are here considered as well as the maximum likelihood method. 

3.1. Method of Moments 

A method of moments (MoM) is presented, derived by equating the marginals moments with the 

mixed moment to the corresponding sample quantities. Denoting by 𝜇̂𝑥𝑦 =
1

𝑛
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1  the sample 

mixed moment. 

It is possible to reach the estimations of moments (θ̌, α̌) by solving the following equations 

numerically 

𝑥̅ =
(1 + 2𝜃)𝑒−𝜃 − (1 + 𝜃)𝑒−2𝜃

(1 + 𝜃)(1 − 𝑒−𝜃)2
 

𝑦̅ =
(1 + 2𝛼)𝑒−𝛼 − (1 + 𝛼)𝑒−2𝛼

(1 + 𝛼)(1 − 𝑒−𝛼)2
 

Then, by substituting into the following function, the moment estimator for β . can be obtained 

𝛽̌ =

1

𝑛
∑ 𝑥𝑖𝑦𝑖 − 𝑥̅𝑦̅𝑛

𝑖=1

[𝐸([2𝐹𝑥(𝑋) − 𝑃(𝑋) − 1]) 𝐸([2𝐹𝑦(𝑌) − 𝑃(𝑌) − 1])] |
𝜃 = 𝜃̌, 𝛼 = 𝛼̌
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3.2. Maximum Likelihood Method 

From (3), the log-likelihood function Ɩ(θ, α, β) is given by: 

Ɩ(θ, α, β) = 𝑛[𝑙𝑛(𝛼) + 𝑙𝑛(𝜃) − 𝑙𝑛(1 + 𝛼) − 𝑙𝑛 (1 + 𝜃)] + 𝑛𝑙𝑛(1 − 𝑒−𝜃) + 𝑛𝑙𝑛(1 − 𝑒−𝛼)

− 𝜃 ∑𝑥𝑖

𝑛

𝑖=1

− 𝛼 ∑𝑦𝑖

𝑛

𝑖=1

+ ∑𝑙𝑛(𝑥𝑖 + 𝑐1)

𝑛

𝑖=1

+ ∑𝑙𝑛(𝑦𝑖 + 𝑐2)

𝑛

𝑖=1

+ ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖, 𝑦𝑖)    (17) 

where  

ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖, 𝑦𝑖)

= ∑𝑙𝑛 [1 

𝑛

𝑖=1

+ 𝛽(1 − (1 +
𝜃𝑥𝑖

𝜃 + 1
) 𝑒−𝜃𝑥𝑖 − (1 +

𝜃 + 𝜃𝑥𝑖

𝜃 + 1
)𝑒−𝜃(𝑥𝑖+1)) (1

− (1 +
𝛼𝑦𝑖

𝛼 + 1
) 𝑒−𝛼𝑦𝑖 − (1 +

𝛼 + 𝛼𝑦𝑖

𝛼 + 1
)𝑒−𝛼(𝑦𝑖+1))] 

 

The Maximum Likelihood estimates (MLEs) of 𝜃, 𝛼 and 𝛽 are obtained by maximizing (17). The 

derivatives of (17) with respect to the unknown parameters are given as, 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛

𝜃 + 1
+

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑𝑥𝑖

𝑛

𝑖=1

+ ∑
𝑐1̀

𝑥𝑖 + 𝑐1

𝑛

𝑖=1

+
𝜕ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖, 𝑦𝑖)

𝜕𝜃
           (18) 

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
−

𝑛

𝛼 + 1
+

𝑛𝑒−𝛼

1 − 𝑒−𝛼
− ∑𝑦𝑖

𝑛

𝑖=1

+ ∑
𝑐2̀

𝑦𝑖 + 𝑐2

𝑛

𝑖=1

+
𝜕ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖, 𝑦𝑖)

𝜕𝛼
           (19) 

𝜕𝑙

𝜕𝛽
=

𝜕ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖 , 𝑦𝑖)

𝜕𝛽
                                                                                                  (20) 

where 

𝑐1̀ =
𝑒−𝜃

(1−𝑒−𝜃)
2 −

1

𝜃2 and 𝑐2̀ =
𝑒−𝛼

(1−𝑒−𝛼)2
−

1

𝛼2 

The likelihood equations are given as 

𝜕𝑙

𝜕𝜃
= 0,

𝜕𝑙

𝜕𝛼
= 0  and 

𝜕𝑙

𝜕𝛽
= 0, 

gives the maximum likelihood estimators 𝜑̂ = (θ̂, α ̂, β̂)̀ of  𝜑 = (𝜃, 𝛼, 𝛽).̀  As  𝑛 → ∞ the 

asymptotic distribution of the MLE(θ̂, α ̂, β̂ ) for BDE Distribution is given as 
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(
θ̂
α ̂
β̂
)~𝑁 [(

θ
α
β
) , (

𝑣11 𝑣12 𝑣13

𝑣21 𝑣22 𝑣23

𝑣31 𝑣32 𝑣33

)]                                                                          (21) 

where 

𝑣−1 = −𝐸

[
 
 
 
 
 

𝜕2𝑙

𝜕𝜃2

𝜕2𝑙

𝜕𝜃𝜕𝛼

𝜕2𝑙

𝜕𝜃𝜕𝛽

𝜕2𝑙

𝜕𝛼𝜕𝜃

𝜕2𝑙

𝜕𝛼2

𝜕2𝑙

𝜕𝛼𝜕𝛽

𝜕2𝑙

𝜕𝛽𝜕𝜃

𝜕2𝑙

𝜕𝛽𝜕𝛼

𝜕2𝑙

𝜕𝛽2 ]
 
 
 
 
 

                                                                          (22) 

In relation to the asymptotic variance-covariance matrix of the ML estimators of the parameters, 

it can be approximated by numerically inverting the above Fisher's information matrix 𝐹. Thus, 

the approximate 100(1 − 𝛾) % two-sided confidence intervals for 𝛼, 𝜃  and 𝛽  can be, 

respectively, easily obtained by. 

𝜃 ± 𝑍𝛾 2⁄ 𝜎𝜃̂ , 𝛼̂ ± 𝑍𝛾 2⁄ 𝜎𝛼̂  and  𝛽̂ ± 𝑍𝛾 2⁄ 𝜎𝛽̂ 

where 𝑍𝛾is the 𝛾𝑡ℎupper percentile of the standard normal distribution. 

3.3. Two-Step Maximum Likelihood 

Since the traditional Maximum Likelihood (ML) method discussed above can be 

computationally cumbersome, the literature has suggested the two-step ML method 

(TSML). 

According to this method, which is proposed in Joe and Xu (1996) and Joe (1997) and is 

also called "Inference Functions for Margins" (IFM), first, the parameters of the marginal 

distributions are estimated based on the ML function of each marginal distribution, then 

the multivariate parameters are estimated from the ML function of the multivariate 

distribution as a second step with the substitution of the estimates for the parameters of 

the marginal distributions from the first step.  

While this method is asymptotically less efficient than the traditional ML method (see 

again Joe (1997)), this method has the distinct advantage of minimizing the dimensions 

of the problem. Which is particularly useful when it is needed to the numerical 

maximization. 

For the bivariate distribution in this study, the TSML method is similar to the case 

presented in Barbiero (2017), when estimates the parameters for the marginal 

distributions of the two marginal distributions as if they were independent as follows, 

𝜕𝑙

𝜕𝜃
=

𝑛

𝜃
−

𝑛

𝜃 + 1
+

𝑛𝑒−𝜃

1 − 𝑒−𝜃
− ∑𝑥𝑖

𝑛

𝑖=1

+ ∑
𝑐1̀

𝑥𝑖 + 𝑐1

𝑛

𝑖=1

    (23) 



 

Scientific Journal for Financial and Commercial Studies and Research 5(2)1 July 2024 

Dr. Yasser Amer; Dr. Dina Abdel Hady and Dr. Rania Shalabi 

 

- 441 - 
 

𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
−

𝑛

𝛼 + 1
+

𝑛𝑒−𝛼

1 − 𝑒−𝛼
− ∑𝑦𝑖

𝑛

𝑖=1

+ ∑
𝑐2̀

𝑦𝑖 + 𝑐2

𝑛

𝑖=1

           (24) 

By solving each equation after equating by zero, we get the parameter estimates for the 

marginal distributions for the parameters of the two marginal distributions θ̃, α̃. Then the 

second step is to substitute those estimates into the ML function for the bivariate 

distribution and calculate the parameter value by setting the following equation to zero: 

𝜕𝑙

𝜕𝛽
=

𝜕ɸ(𝜃, 𝛼, 𝛽, 𝑥𝑖 , 𝑦𝑖)

𝜕𝛽
|
𝜃 = 𝜃̃, 𝛼 = 𝛼̃

                                             (20) 

4. Simulation Study 

In this section, a simulation is done for a comparison between the estimation methods, MoM, 

MLE and TSML, used for estimating BDL distribution parameters by R language. 

The values of the parameters 𝜃, 𝛼𝑎𝑛𝑑 𝛽 are chosen as the following cases for the random 

variables using different sample size n =20, 50, 100 and 150, 

Case1: (𝜃 = 0.4 , 𝛼 = 0.3 , 𝛽 = −0.6),Case2: (𝜃 = 1.5 , 𝛼 = 1.6 , 𝛽 = −0.6), 

Case 3:(𝜃 = 0.4 , 𝛼 = 0.3 , 𝛽 = 0.7), andCase4: (𝜃 = 1.5 , 𝛼 = 1.6 , 𝛽 = 0.7) 

All computations are obtained. The simulation methods are compared using the criteria 

of parameters estimation, the comparison is performed by calculate the Bias, the MSE, 

and the length of confidence interval (L.CI) as follows, 

𝐵𝑖𝑎𝑠 = 𝛿 − 𝛿 

Where 𝛿is the estimated value of 𝛿 . 

𝑀𝑆𝐸 = 𝑀𝑎𝑒𝑛 (𝛿 − 𝛿)
2
 

and 

𝐿. 𝐶𝐼 = 𝑈𝑝𝑝𝑒𝑟. 𝐶𝐼 − 𝐿𝑜𝑤𝑒𝑟. 𝐶𝐼 

We restricted the number of repeated samples to 1000. 
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Table 2: Estimation of the Parameters of BDL Distribution: Case 1 

n methods  mean Bias MSE L.CI 

20 

MLE 

𝜃̂ 0.523 -0.123 0.02 0.29 

𝛼̂ 0.181 0.119 0.02 0.285 

𝛽̂ -0.726 0.126 0.021 0.277 

MoM 

𝜃̌ 0.91 -0.51 0.338 1.093 

𝛼̌ -0.19 0.49 0.322 1.122 

𝛽̌ -0.905 0.405 0.337 1.12 

TSML 

𝜃̃ 0.567 -0.167 0.037 0.376 

𝛼̃ 0.143 0.157 0.034 0.379 

𝛽 -0.09 -0.51 0.34 1.11 

50 

MLE 

𝜃̂ 0.45 -0.05 0.003248 0.109 

𝛼̂ 0.25 0.05 0.0033 0.109 

𝛽̂ -0.651 0.051 0.00343 0.112 

MoM 

𝜃̌ 0.604 -0.204 0.055 0.446 

𝛼̌ 0.092 0.208 0.056 0.451 

𝛽̌ -0.799 0.199 0.052 0.431 

TSML 

𝜃̃ 0.563 -0.163 0.036 0.383 

𝛼̃ 0.126 0.174 0.04 0.376 

𝛽 -0.087 -0.513 0.347 1.138 

100 

MLE 

𝜃̂ 0.426 -0.026 0.000865 0.057 

𝛼̂ 0.276 0.024 0.000788 0.057 

𝛽̂ -0.626 0.026 0.000879 0.056 

MoM 

𝜃̌ 0.502 -0.102 0.014 0.233 

𝛼̌ 0.199 0.101 0.014 0.232 

𝛽̌ -0.702 0.102 0.014 0.222 

TSML 

𝜃̃ 0.56 -0.16 0.035 0.373 

𝛼̃ 0.129 0.171 0.039 0.377 

𝛽 -0.131 -0.469 0.296 1.088 

150 

MLE 

𝜃̂ 0.423 -0.023 0.000698 0.052 

𝛼̂ 0.274 0.026 0.000899 0.058 

𝛽̂ -0.627 0.027 0.000957 0.061 

MoM 

𝜃̌ 0.503 -0.103 0.014 0.241 

𝛼̌ 0.193 0.107 0.015 0.225 

𝛽̌ -0.697 0.097 0.013 0.22 

TSML 

𝜃̃ 0.555 -0.155 0.033 0.371 

𝛼̃ 0.13 0.17 0.038 0.375 

𝛽 -0.07 -0.53 0.354 1.057 
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Table 3: Estimation of the Parameters of BDL Distribution: Case 2 

n methods  mean Bias MSE L.CI 

20 

MLE 

𝜃̂ 1.623 -0.123 0.021 0.285 

𝛼̂ 1.478 0.122 0.02 0.282 

𝛽̂ -0.474 -0.126 0.021 0.284 

MoM 

𝜃̌ 2.005 -0.505 0.331 1.08 

𝛼̌ 1.117 0.483 0.318 1.142 

𝛽̌ -0.988 0.388 0.316 1.097 

TSML 

𝜃̃ 1.664 -0.164 0.036 0.37 

𝛼̃ 1.44 0.16 0.035 0.373 

𝛽 -0.121 -0.479 0.317 1.157 

50 

MLE 

𝜃̂ 1.55 -0.05 0.003385 0.114 

𝛼̂ 1.549 0.051 0.003414 0.11 

𝛽̂ -0.549 -0.051 0.00345 0.114 

MoM 

𝜃̌ 1.707 -0.207 0.057 0.461 

𝛼̌ 1.404 0.196 0.052 0.451 

𝛽̌ -0.801 0.201 0.053 0.442 

TSML 

𝜃̃ 1.653 -0.153 0.032 0.371 

𝛼̃ 1.436 0.164 0.037 0.389 

𝛽 -0.089 -0.511 0.342 1.115 

100 

MLE 

𝜃̂ 1.526 -0.026 0.000853 0.056 

𝛼̂ 1.575 0.025 0.0008166 0.055 

𝛽̂ -0.575 -0.025 0.0008369 0.056 

MoM 

𝜃̌ 1.602 -0.102 0.014 0.231 

𝛼̌ 1.495 0.105 0.014 0.229 

𝛽̌ -0.707 0.107 0.015 0.215 

TSML 

𝜃̃ 1.66 -0.16 0.034 0.368 

𝛼̃ 1.439 0.161 0.035 0.382 

𝛽 -0.112 -0.488 0.322 1.137 

150 

MLE 

𝜃̂ 1.523 -0.023 0.000.416 0.058 

𝛼̂ 1.575 0.025 0.0008395 0.06 

𝛽̂ -0.574 -0.026 0.0008629 0.053 

MoM 

𝜃̌ 1.603 -0.103 0.014 0.241 

𝛼̌ 1.493 0.107 0.015 0.225 

𝛽̌ -0.697 0.097 0.013 0.22 

TSML 

𝜃̃ 1.659 -0.159 0.035 0.383 

𝛼̃ 1.416 0.184 0.044 0.383 

𝛽 -0.109 -0.491 0.321 1.108 
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Table 4: Estimation of the Parameters of BDL Distribution: Case 3 

n methods  mean Bias MSE L.CI 

20 

MLE 

𝜃̂ 0.526 -0.126 0.021 0.278 

𝛼̂ 0.173 0.127 0.021 0.281 

𝛽̂ 0.571 0.129 0.022 0.283 

MoM 

𝜃̌ 0.905 -0.505 0.331 1.08 

𝛼̌ -0.183 0.483 0.318 1.142 

𝛽̌ 0.222 0.488 0.316 1.097 

TSML 

𝜃̃ 0.561 -0.161 0.035 0.369 

𝛼̃ 0.137 0.163 0.035 0.367 

𝛽 0.225 0.475 0.304 1.096 

50 

MLE 

𝜃̂ 0.449 -0.049 0.003208 0.113 

𝛼̂ 0.249 0.051 0.00338 0.111 

𝛽̂ 0.65 0.05 0.003353 0.114 

MoM 

𝜃̌ 0.601 -0.201 0.054 0.456 

𝛼̌ 0.103 0.197 0.053 0.457 

𝛽̌ 0.903 -0.203 0.054 0.45 

TSML 

𝜃̃ 0.561 -0.161 0.035 0.38 

𝛼̃ 0.145 0.155 0.033 0.365 

𝛽 0.219 0.481 0.305 1.067 

100 

MLE 

𝜃̂ 0.427 -0.027 0.0009258 0.054 

𝛼̂ 0.275 0.025 0.00085 0.06 

𝛽̂ 0.673 0.027 0.000986 0.06 

MoM 

𝜃̌ 0.503 -0.103 0.014 0.235 

𝛼̌ 0.202 0.098 0.013 0.226 

𝛽̌ 0.801 -0.101 0.014 0.233 

TSML 

𝜃̃ 0.561 -0.161 0.036 0.383 

𝛼̃ 0.135 0.165 0.036 0.372 

𝛽 0.197 0.503 0.334 1.11 

150 

MLE 

𝜃̂ 0.425 -0.025 0.0008421 0.056 

𝛼̂ 0.276 0.024 0.0007933 0.056 

𝛽̂ 0.675 0.025 0.000833 0.056 

MoM 

𝜃̌ 0.505 -0.105 0.015 0.233 

𝛼̌ 0.204 0.096 0.013 0.228 

𝛽̌ 0.81 -0.11 0.015 0.214 

TSML 

𝜃̃ 0.553 -0.153 0.034 0.397 

𝛼̃ 0.129 0.171 0.037 0.342 

𝛽 0.155 0.545 0.383 1.148 
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Table 5: Estimation of the Parameters of BDL Distribution: Case 4 

n methods  mean Bias MSE L.CI 

20 

MLE 

𝜃̂ 1.629 -0.129 0.022 0.294 

𝛼̂ 1.473 0.127 0.022 0.289 

𝛽̂ 0.578 0.122 0.02 0.29 

MoM 

𝜃̌ 1.99 -0.49 0.321 1.11 

𝛼̌ 1.089 0.511 0.349 1.164 

𝛽̌ 0.151 0.549 0.383 1.116 

TSML 

𝜃̃ 1.667 -0.167 0.038 0.39 

𝛼̃ 1.433 0.167 0.037 0.381 

𝛽 0.207 0.493 0.331 1.167 

50 

MLE 

𝜃̂ 1.549 -0.049 0.003261 0.113 

𝛼̂ 1.55 0.05 0.003339 0.114 

𝛽̂ 0.649 0.051 0.003397 0.111 

MoM 

𝜃̌ 1.694 -0.194 0.051 0.448 

𝛼̌ 1.401 0.199 0.053 0.46 

𝛽̌ 0.894 -0.194 0.05 0.433 

TSML 

𝜃̃ 1.671 -0.171 0.038 0.374 

𝛼̃ 1.425 0.175 0.04 0.368 

𝛽 0.197 0.503 0.34 1.152 

100 

MLE 

𝜃̂ 1.525 -0.025 0.00082 0.057 

𝛼̂ 1.576 0.024 0.000784 0.055 

𝛽̂ 0.675 0.025 0.000835 0.057 

MoM 

𝜃̌ 1.602 -0.102 0.014 0.228 

𝛼̌ 1.5 0.1 0.013 0.224 

𝛽̌ 0.803 -0.103 0.014 0.221 

TSML 

𝜃̃ 1.666 -0.166 0.037 0.374 

𝛼̃ 1.433 0.167 0.037 0.378 

𝛽 0.216 0.484 0.317 1.125 

150 

MLE 

𝜃̂ 1.524 -0.024 0.00078 0.058 

𝛼̂ 1.576 0.024 0.000781 0.057 

𝛽̂ 0.676 0.024 0.000776 0.057 

MoM 

𝜃̌ 1.6 -0.1 0.013 0.224 

𝛼̌ 1.505 0.095 0.012 0.219 

𝛽̌ 0.797 -0.097 0.013 0.233 

TSML 

𝜃̃ 1.681 -0.181 0.04 0.338 

𝛼̃ 1.446 0.154 0.033 0.368 

𝛽 0.164 0.536 0.353 1.007 
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We note from Tables 2 through 5 that the parameters of the BDL distribution were 

estimated by the three methods that were previously explored. It was found from the 

results of the estimates that the ML method is the best estimation method, as its bias 

values are relatively small compared to the rest of the estimation methods. It also has the 

lowest values for both MSE and L.CI. 

Although the MoM method gives relatively reasonable estimates, it sometimes gives very 

far values for the estimator β which affects the values of MSE and L.CI to be relatively 

large for this estimator. Because both θ and α are estimated separately, then using these 

estimators to estimate β, therefore the process of controlling the properties of the 

estimators together is not achieved. Despite the above, both ML and MoM achieve that 

the estimators have the property of consistency. Also, as it is noticed with the large sample 

size, the values of Bias and MSE decreased. Looking at the TSML method, we find that 

it suffers from the same thing as the MoM method, which is sometimes it gives very far 

values for the estimator β, which affects the values of MSE and L.CI. This is due to the 

same reason that the estimation process is carried out in two stages and it does not achieve 

the consistency property of the estimators where the values of Bias and MSE are not 

affected by the large sample size. 

From the above, it can be said that the ML method gives estimators with good properties 

compared to Mom and TSML. Despite the expended effort in the estimation process with 

the two methods MoM and TSML is much less than the method of the ML. 

5. Real Data Example 

Table (6) shows the results that collected from a trusted soccer’s site of the Italian League 

2019/2020, where the variable X expresses the number of home team goals, and the 

variable Y expresses the number of away team goals and the numbers inside the cells 

express the repetitions of each result.  
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Table 6: Results of the Italian League 2019/2020 

y\x 0 1 2 3 4 ≥ 5 Total 

0 
69 49 24 15 4 2 163 

)67.26 ( )40.66 ( )28.12 ( )10.26 ( )7.98 ( )1.898 ( )156.18 ( 

1 
51 24 16 8 4 1 104 

)46.36 )29.26 ( )15.20 ( )7.22 ( )3.334 ( )1.462 ( )102.84 ( 

2 
26 18 9 5 3 0 61 

)26.98 ( )17.48 ( )9.50 ( )4.56 ( )2.076 ( )0.913 ( )61.51 ( 

3 
14 8 5 2 3 0 32 

)14.44 ( )9.50 ( )5.32 ( )2.537 ( )1.162 ( )0.512 ( )33.47 ( 

4 
8 5 2 1 0 0 16 

)7.60 ( )4.94 ( )2.723 ( )1.332 ( )1.14 ( )0.000 ( )17.74 ( 

≥ 5 
3 1 0 0 0 0 4 

)3.701 ( )2.51 ( )1.372 ( )0.672 ( )0.000 ( )0.000 ( )8.26 ( 

Total 
171 105 56 31 14 3 380 

)166.341 ( )104.35 ( )62.236 ( )26.581 ( )15.691 ( )4.784 ( )379.983 ( 

 

We found that the sample statistics summary are, x̅ = 1.4395 , y̅ = 1.27 , Var(x) =

1.64  , Var(y) = 1.27𝜌̂𝑥𝑦 = 0.014   .  

 

Table7: Parameter estimates for the BDL Distribution applied to the Italian League 

2019/2020 

Method 𝜃 𝛼 𝛽 

ML 0.858 0.994 0.105 

MoM 1.118 1.431 0.198 

TSML 0.915 1,099 0.177 

 

The observed Fisher Information Matrix is given by: 

Ι̂ = (
0.000613 0.000245 −0.000325
0.000245 0.000641 −0.00139

−0.000325 −0.00139 0.00219
) 
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The asymptotic standard errors of the three MLEs can be easily derived: 

SE(θ̂) =  0.02476 , SE(α̂) =  0.02532 and SE(β̂) =  0.046797 . 95% confidence 

intervals for the three parameters based on log-likelihood are provided as (θL, θU) =

 (0.8095 , 0.9065) , (αL, αU) =  (0.989 , 0.9989) and (βL, βU) =  (0.01328 , 0.1967). 

The value of the log-likelihood function computed at the MLEs is lmax = −180.42 and 

the corresponding value of the Akaike Information Criterion ( AIC = 2(K − lmax , with k 

= 3 being the number of parameters) is 354.84. 

We computed the theoretical absolute joint frequencies, by using the PMF in (6) with the 

MLEs of the parameters (θ , α , β) they are displayed between brackets in Table 6. Then 

we aggregated cells in order to obtain for each grouping an aggregate frequency larger 

than or equal 5; we computed the chi-square statistic χ2 = ∑ (n̂g − ng)
2

n̂g⁄G
g=1  where 

ngis the observed count for grouping g, n̂gis its theoretical analog, G is the number of 

groupings (in this case G = 36). Under the null hypothesis that the bivariate sample comes 

from the proposed distribution, χ2 is approximately distributed as a chi-square r. v. with 

36 - 3 - 1 = 32 degrees of freedom. The empirical value of χ2is 18.123; its p-value is 0.994 

and being far larger than 0 it refers to a satisfactory fit of the model to the data. 

Plugging in the MLEs of the three parameters into (16), one derives the MLE of R, as 

R̂  =  0.4153, which represents the estimated probability that the number of aborts in the 

second period is not smaller than the number of aborts in the first one. By the way, the 

MLE of R is very close to the standard non-parametric estimate R̃ =
1

n
∑ 1xi≤yi

n
i=1 =

134

1380
= 0.353. 

6. Conclusion 

In this paper a bivariate discrete Lindley distribution has been derived from a discrete 

Lindley distribution using Farlie-Gumbel-Morgenstern copula which can be used in many 

situations where discrete data appear, such as industrial quality control, insurance, health, 

economics, and marketing, etc. 

Some properties of this distribution such as probability generating function, conditional 

distributions, Pearson's correlation, reliability parameter are studied. 

To estimate the parameters of the distribution, three methods of estimation were presented 

which are ML, MoM, TSML. Then those methods were compared using numerical 

simulation and have been concluded that the best estimation method for this distribution 
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is ML since it gives the lowest values for Bias, L.CI and MSE. These estimators are 

characterized by consistency, which means Bias and MSE decrease with increasing 

sample size but despite that the method of ML requires more time and effort during the 

estimation process than the two methods MoM and TSML. Where ML estimates the three 

parameters sat the same time and all together since the other methods estimate the 

parameters θ, α as a first stage then estimate the parameter β at a later stage. That makes 

the properties of the parameter β not good compared to the properties of the rest of the 

parameters. 

Finally, a practical application was made on real data to show the appropriateness of the 

proposed distribution on those data where the results of the estimation showed that the 

bivariate discrete Lindley distribution has a goodness of fit on those data. 

We hope that the proposed model will be a valuable alternative to the existing models 

dealing with this kind of data set considered here. 

Abbreviations 

PMF Probability Mass Function 

CDF Cumulative Distribution Function 

FGM Farlie-Gumbel-Morgenstern 

BDL Bivariate Discrete Lindley 

MoM Method of Moments 

MLEs Maximum Likelihood Estimates 

ML Maximum Likelihood 

TSML Two-Step ML 

IFM Inference Functions for Margins 

L.CL length of Confidence Interval 

AIC Akaike Information Criterion 

G the number of groupings 
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