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Estimation of Rényi entropy of linear failure rate distribution 

based on Generalized Type- II Hybrid Censored Samples 

Dr. Dina Samir El-telbany  

Abstract 

Entropy is an essential term in statistical mechanics that was originally 

defined in the second law of thermodynamics. In this paper, we estimate the 

Rényi entropy measure of a linear failure rate distribution when data are 

generalized type-II hybrid censored. The estimations with the maximum 

likelihood are obtained. With regard to the linex loss function, the Bayes 

estimates are suggested. The Bayes estimates for closed-form formulations 

are unavailable. The methods of significance sampling and Tierney and 

Kadane's approximation are thus used. To demonstrate the suggested 

approaches, two real datasets based on a generalized type-II hybrid censored 

scheme have also been analyzed for illustrative purposes. Simulation studies 

to evaluate the performance of the estimates with various sample sizes are 

described. Additionally, many criteria are suggested for contrasting various 

sample plans, such as relative mean squared error and relative bias for various 

censored samples. The Bayes estimators of entropy are superior to the 

maximum likelihood. 

Keywords: Bayes estimation, generalized type-II hybrid censored, linear 

failure rate distribution, Tierney and Kadane approximation. 

1. Introduction  

The two-parameter linear failure rate distribution (LFR) has been used 

quite successfully to analyze lifetime data. This distribution is also known as 

the linear exponential distribution, having exponential and Rayleigh 

distributions as special cases. It is a very well-known distribution for 

modeling lifetime data in reliability and medical studies. It is also used to 

model phenomena with increasing failure rate. The cumulative distribution 

function (𝐶𝐷𝐹) and probability density function (𝑝𝑑𝑓) of LFR distribution 

are given by 

 𝐹(𝑧) = 1 − 𝑒−𝛾𝑧−
𝜃

2
𝑧²  𝑧 > 0, 𝛾 > 0, 𝜃 > 0 ,              (1)  
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 and 

 𝑓(𝑧) = (𝛾 + 𝜃𝑧) 𝑒−𝛾𝑧−
𝜃

2
𝑧², 𝑧 > 0, 𝛾 > 0, 𝜃 > 0 ,       (2) 

respectively, where γ is scale parameter and θ is shape parameter. Note that 

if 𝜃 = 0 and 𝛾 ≠ 0, then the LFR distribution is refers to as exponential 

distribution with parameter 𝛾 and if 𝛾 = 0 and 𝜃 ≠ 0 then we can obtain the 

Rayleigh distribution with parameter 𝜃. 

    In the recent past, many researchers have taken a keen interest in the 

measurement of uncertainty associated with a probability distribution. Of 

particular interest in probability and statistics is the notion of entropy. One of 

the first and most popular ways to estimate entropy is with Shannon's entropy. 

This measurement has shown to be successful in the research of 

communication networks. Let Z be a random variable with cumulative 

distribution function (cdf) 𝐹(𝑧), and probability density function (pdf) 𝑓(𝑧), 

then the Shannon's entropy 𝐻𝑧 of the random variable Z is defined as: 

 𝐻𝑍 = 𝐻(𝑓) =  −𝐸[ln 𝑓(𝑧)] = ∫ 𝑓(𝑧) log 𝑓(𝑧)𝑑𝑧,
∞

−∞
 

    One of Shannon's measure's biggest drawbacks is that it could be negative 

for specific probability distributions, rendering it worthless as a measure of 

uncertainty. In order to create a new generalized entropy, Rényi researched 

the ideas of uncertainty and randomness. Rényi entropy is characterized by: 

𝐻𝑅(𝛼) =
1

1 − 𝛼
log [∫ 𝑓𝛼(𝑧)𝑑𝑧

∞

−∞

], 

 where, 𝛼 > 0 and 𝛼 ≠ 1 

    Many authors worked on the estimation entropy for different life 

distributions. Kayal (2015) studied a generalized residual entropy of record 

values and weighted distributions. Cho et al. in (2015) considered the 

estimation of the entropy of Weibull distribution based on the generalized 

progressively censored sample. Mahdy & Samir (2017) introduced the 

differential entropy and 𝛽 − entropy for Nakagami−𝜇 distributions and their 

associated distributions were gained. Lee (2017) introduced the classical and 

Bayes estimation of the entropy of the inverse weibull distribution under 

under generalized progressive hybrid censored data.  Lee (2020) suggested 

using the extended type I hybrid censoring approach to estimate the entropy 

of a Weibull distribution. He proposed symmetric and asymmetric loss 

function-based Bayes estimators for the Weibull distribution's entropy. 
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Mahmoud et al. (2021, a) introduced estimating the entropy of a Lomax 

distribution under Generalized Type-I hybrid censoring.  In the generalized 

type-II hybrid censored sample, Ahmad (2021) proposed the Bayes estimator 

for the residual entropy of the Inverse Weibull distribution. Mahmoud et al. 

(2021, b) introduced the estimation of the entropy and residual entropy of a 

two parameter Lomax distribution under a generalized Type-II hybrid 

censoring scheme.  Al-Babtain et al. (2021) discussed the maximum 

likelihood and Bayesian methods of estimation for dynamic cumulative 

residual Rényi entropy of Lomax distribution.  Jose and Abdul Sathar (2022) 

introduced Rényi entropy as a function of the ordered random variable named 

k-records instead of the unordered random variable to derive some new 

characterizations of probability distributions. Shrahili  et al. (2022) discussed 

estimation problem of certain entropy measures such as Rényi entropy, A-

entropies, Arimoto entropy, Havrda and Charvat entropy and Tsallis entropy 

for log-logistic distribution under the progressive type II censoring (PT2C) 

scheme. 

    In a lifetime experiment, the researcher will probably stop the experiment 

before all of the items fail. This is due to the fact that the last failure's waiting 

period is unknown or that the study's subject matter can be costly. Due to 

these causes, the experiment is stopped before the last failure, and the data 

samples that result from this are known as censored samples. There are 

several censoring schemes. We say that we have a "type I censoring scheme" 

if the experiment is over at a fixed, predetermined time T. If the experiment 

is stopped at the 𝑟𝑡ℎ failure, it is said to have a "type II censorship system." 

A mixture of Type-I and Type-II censoring schemes is a hybrid censoring 

scheme. Type I hybrid censoring scheme is used when the experiment ends 

when either the pre-determined censoring period T or the pre-fixed number 

of failures (r) have occurred (Type-I HCS). We write 𝑇 = 𝑚𝑖𝑛 𝑋𝑟:𝑛 , T to 

represent the time at which the experiment ends. A type II hybrid censoring 

strategy is used when the experiment ends after either the last of a set of pre-

fixed failure numbers has failed or a set censoring time T is achieved (Type-

II HCS). We write  𝑇 = 𝑚𝑎𝑥 𝑋𝑟:𝑛 , T as the time at which the experiment 

ends. The prefixed time T is likely to occur in type I hybrid censoring before 

there are enough failure times to draw conclusions. On the other hand, type II 

hybrid censoring may take long time before we see the necessary number of 

failures. Chandrasekar et al. (2004) presented generalized type I and type II 

hybrid censoring methods to overcome these drawbacks. 
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This paper's goal is to introduce both the classical and Bayesian 

estimation of Rényi entropy of LFR distribution under (G-Type-II HCS) 

scheme. But as it seems out, the entropy's MLE cannot be derived in closed 

form. Therefore, we must simultaneously solve two nonlinear equations. 

Furthermore, using flexible priors, we obtain the Bayes estimation of the 

entropy. For the entropy of LLF, the Bayes estimators are obtained. We 

construct the Bayes estimates by discarding the Tierney and Kadane 

approximate method because the Bayes estimators cannot be produced in 

closed form. The remainder of this essay is structured as follows. The entropy 

of LFR distribution is estimated using both classical and Bayesian methods 

in section 2 using the (G-Type-II HCS) scheme. Two real datasets have been 

analyzed in Section 3. In Section 4, the description of different estimators that 

are compared by performing the Monte Carlo simulation is introduced. 

2. Entropy Estimation 

Consider the LFR distribution with pdf (2), survival function 

                                𝑆(𝑧) = 𝑒−𝛾𝑧−
𝜃

2
𝑧²,    𝑧 > 0.                           (3) 

Thus, the Rényi entropy function associated with the LFR distribution (2) can 

be obtained as:  

𝐻𝑅(𝛼) =
1

1 − 𝛼
log [∫ (𝛾 + 𝜃𝑧)𝛼𝑒(−𝛾𝑧−

𝜃
2

𝑧²)𝛼𝑑𝑧
∞

0

]. 

After some calculations the Rényi entropy function for the linear failure rate 

model is 

      𝐻𝑅(𝛼) =
1

1−𝛼
[log (∑ ∑ 𝛾𝛼−𝑗∞

𝑗=0 (𝛼
𝑗
)

𝛼𝑗𝜃𝑖−2

𝑗!
Γ(i + j + 1)∞

𝑖=0 )]. (4  )                 

2.1 Maximum likelihood estimation  

Consider a life-testing experiment in which n identical units are tested at time 

0 on a life-test. The equivalent lifetimes from a distribution with cdf 𝐹(𝑥) and 

pdf 𝑓(𝑥) are denoted by 𝑍₁, 𝑍₂, 𝑍₃, . . . 𝑍𝑛. As an example, a G-Type-II HCS 

is characterized as; fix time points 𝑇₁ and 𝑇₂ ∈  (0, ∞) and an integer 𝑟 ∈
{1,2,3, . . . , 𝑛} where 𝑇₁ < 𝑇₂. Terminate the experiment at time point 𝑇₁ if 

the 𝑟𝑡ℎ failure takes place before 𝑇₁. Terminate the experiment at the moment 

of the failure, 𝑍𝑟:𝑛, if the 𝑟𝑡ℎ failure happens between 𝑇₁ and 𝑇₂. Terminate 

the experiment at time 𝑇₂ if the 𝑟𝑡ℎfailure takes place after that point. Under 

such G-Type-II HCS, we will perform one of the following types of 

observations: 
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 Case I:  {𝑍1:𝑛 < 𝑍2:𝑛 <. . . < 𝑍𝑟:𝑛 <. . . < 𝑍𝐷1
≤ 𝑇1},   𝑖𝑓  𝑍𝑟:𝑛 < 𝑇₁, 

Case II : {𝑍1:𝑛 < 𝑍2:𝑛 <. . . < 𝑇1 <. . . < 𝑍𝑟:𝑛}, 𝑖𝑓 𝑇1 <  𝑍𝑟:𝑛 < 𝑇2, 

Case III: {𝑍1:𝑛 < 𝑍2:𝑛 <. . . < 𝑇1 <. . . < 𝑍𝐷2
≤ 𝑇2}, 𝑖𝑓  𝑍𝑟:𝑛 < 𝑇2, 

where, 𝐷𝑖 denote the number of failures up to time 𝑇𝑖 , 𝑖 ∈ (1,2). Then, the 

likelihood functions for the three various instances mentioned above under a 

generalized type-II hybrid censored sample are as follows: 

 Case I: 
𝑛!

(𝑛−𝑟)!
(∏ 𝑓(𝑧(𝑖))

 𝐷1
𝑖=1 )(1 − 𝐹(𝑇1))𝑛−𝐷1 , 𝐷1 = 𝑟, 𝑟 + 1, … , 𝑛 , 

Case II:   
𝑛!

(𝑛−𝑟)!
(∏ 𝑓(𝑧(𝑖)) 𝑟

𝑖=1 )(1 − 𝐹(𝑥𝑟))𝑛−𝑧𝑟 , 𝐷2 = 𝑟 , 

Case III:   
𝑛!

(𝑛−𝑟)!
(∏ 𝑓(𝑧(𝑖))

 𝐷2
𝑖=1 )(1 − 𝐹(𝑇2))𝑛−𝐷2 , 𝐷2 = 0, 1, … , 𝑟 − 1. 

Assume n items with lifetime distribution that are i.i.d. a linear failure rate 

random variables with cdf (1) and pdf (2), put on a test. Assume also that we 

subject the experiment to G Type II HCS described in this section. Let 

𝐷1, 𝐷2 denotes the number of failures that occur by time point 𝑇1, 𝑇2 

respectively, then based on the G TypeII HCS, the likelihood functions of 𝛾 

and 𝜃 are given by: 

Case I: 

      𝐿𝐼(𝛾, 𝜃) =
𝑛!

(𝑛−𝑟)!
(∏ (𝛾 + 𝜃𝑧𝑖) 𝑒−𝛾𝑧𝑖−

𝜃

2
𝑧𝑖² 𝐷1

𝑖=1 ) (𝑒−𝛾𝑇1−
𝜃

2
𝑇1²)

𝑛−𝐷1

,  

Case II:       

     𝐿𝐼𝐼(𝛾, 𝜃) =
𝑛!

(𝑛−𝑟)!
(∏ (𝛾 + 𝜃𝑧𝑖) 𝑒−𝛾𝑧𝑖−

𝜃

2
𝑧𝑖² 𝑟

𝑖=1 ) (𝑒−𝛾𝑧𝑟−
𝜃

2
𝑧𝑟²)

𝑛−𝑟

,   

Case III:   

      𝐿𝐼𝐼𝐼(𝛾, 𝜃) =
𝑛!

(𝑛−𝑟)!
(∏ (𝛾 + 𝜃𝑧𝑖) 𝑒−𝛾𝑧𝑖−

𝜃

2
𝑧𝑖² 𝐷2

𝑖=1 ) (𝑒−𝛾𝑇2−
𝜃

2
𝑇2²)

𝑛−𝐷2

. 

Furthermore, the following are the corresponding log likelihood functions: 

Case I:    

𝐿𝐼(𝛾, 𝜃) = 

∑ ln(𝛾 + 𝜃𝑧𝑖) + ∑ (−𝛾𝑧𝑖 − (
𝜃

2
) 𝑧𝑖

2)
𝐷1
𝑖=1 + (𝑛 − 𝐷1) (−𝛾𝑇1 −

𝜃

2
𝑇1

2)
𝐷1
𝑖=1 , 
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Case II:  

𝐿𝐼𝐼(𝛾, 𝜃) = 

∑ ln(𝛾 + 𝜃𝑧𝑖) + ∑ (−𝛾𝑧𝑖 − (
𝜃

2
) 𝑧𝑖

2)𝑟
𝑖=1 + (𝑛 − 𝑟)(−𝛾𝑧𝑟 −

𝜃

2
𝑧𝑟²)𝑟

𝑖=1  , 

Case III:     

𝐿𝐼𝐼𝐼(𝛾, 𝜃) = 

∑ ln(𝛾 + 𝜃𝑧𝑖) + ∑ (−𝛾𝑧𝑖 − (
𝜃

2
) 𝑧𝑖

2)
𝐷2
𝑖=1 + (𝑛 − 𝐷2) (−𝛾𝑇2 −

𝜃

2
𝑇2

2)
𝐷2
𝑖=1  . 

    Therefore, Cases I, II and III can be combined and can be written as: 

𝐿 (𝛾, 𝜃) = 

∑ ln(𝛾 + 𝜃𝑧𝑖) + ∑ (−𝛾𝑧𝑖 − (
𝜃

2
) 𝑧𝑖

2)𝑊
𝑖=1 + (𝑛 − 𝑊) (−𝛾𝐾 −

𝜃

2
𝐾2)𝑊

𝑖=1 ,  (5 )    

    where, 𝑊 = 𝐷1 and 𝐾 = 𝑇1 for Case I, 𝑊 = 𝑟 and 𝐾 = 𝑧𝑟 for Case II and 

𝑊 = 𝐷2 and 𝐾 = 𝑇2 for Case III. 

    Taking derivatives with respect to 𝛾 and 𝜃 of (5) 

𝜕𝑙

𝜕𝛾
= ∑

1

(𝛾 + 𝜃𝑧𝑖)

𝑊

𝑖=1

− ∑ 𝑧𝑖

𝑊

𝑖=1

− (𝑛 − 𝑊)𝐾, 

𝜕𝑙

𝜕𝜃
= ∑

𝑧𝑖

(𝛾 + 𝜃𝑧𝑖)

𝑊

𝑖=1

− ∑
𝑧𝑖

2

2

𝑊

𝑖=1

− (𝑛 − 𝑊)
𝐾2

2
, 

    We numerically solve these equations because they cannot be solved 

analytically to get the maximum likelihood estimates of 𝛾 and 𝜃 for 𝛾 and 𝜃 

respectively. The MLE of the Rényi entropy (𝐻̂𝑅𝑀𝐿𝐸) is obtained after we 

have the MLE, 𝛾 and 𝜃 as: 

𝐻̂𝑅𝑀𝐿𝐸 =
1

1 − 𝛼
[log (∑ ∑ 𝛾𝛼−𝑗

∞

𝑗=0

(
𝛼

𝑗
)

𝛼𝑗𝜃𝑖−2

𝑗!
Γ(i + j + 1)

∞

𝑖=0

)]. 
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2.2 Bayes estimation 

 

In this section, the Bayes estimator for the Rényi entropy of the LFR 

distribution will be derived. To get the Bayes estimator of the entropy, we 

first specify the prior distributions of the scale (𝛾) and shape (𝜃) parameters 

before calculating their combined prior distribution. The next step is to 

determine the joint density of 𝛾 , 𝜃 and the random variable Z. The posterior 

distribution of 𝜃, 𝛾 given Z, will then be obtained. Ultimately, Rényi entropy 

Bayes estimates will be obtained. 

2.2.1 Prior and posterior distribution 

    In the experimental data, the Bayesian estimation needs the selection of 

suitable priors for the unknown parameters. We assume that 𝛾 and 𝜃 are 

independent unknown parameters in the case of an informative prior and that 

their corresponding joint prior distribution of 𝛾 and 𝜃 (see, Salem (1992) ) is 

calculated as: 

       𝜋(𝛾, 𝜃) = 𝛾𝑎1−1𝜃𝑎2−1𝑒−𝑏1𝛾−𝑏2𝜃, 𝑎1 > 0, 𝑎2 > 0, 𝑏1 > 0, 𝑏2 > 0 

Then, the joint density of the 𝛾, 𝜃, and Z is 

𝐿(𝛾, 𝜃|𝑍) = 𝛾𝑎1−1𝜃𝑎2−1𝑒−𝑏1𝛾−𝑏2𝜃(𝛾 + 𝜃𝑧) 𝑒−𝛾z−
𝜃

2
𝑧²

. 

To get the Bayes estimators for the entropy function of the LFR distribution 

under (G-Type-II HCS) scheme. We obtain estimator under LFF loss function 

defined as 

𝐿𝐿𝐹: 𝐿𝑙(𝛽̂, 𝛽) = 𝑒𝑐(𝛽̂−𝛽) − 𝑐(𝛽̂ − 𝛽) − 1. 

   We can then obtain the Bayes estimator of Rényi entropy under LLF (𝐻̂𝑅𝐵𝐿). 

It is derived as 

𝐻̂𝑅𝐵𝐿 =

−
1

𝑐
log [

∫ exp{
−c

1−𝛼
[log(∑ ∑ 𝛾̂𝛼−𝑗∞

𝑗=0 (𝛼
𝑗 )

𝛼𝑗𝜃̂𝑖−2

𝑗!
Γ(i+j+1)∞

𝑖=0 )]}𝐿(𝛾, 𝜃|𝑍)𝜋(𝛾,𝜃)𝑑𝛾𝑑𝜃
∞

0

∫ ∫ 𝐿(𝛾, 𝜃|𝑍)𝜋(𝛾,𝜃)𝑑𝛾𝑑𝜃
∞

0
∞

0

]. 

2.2.2 Tierney and Kadane approximation 

    In this subsection, we produced a Bayesian estimate of the LFR's entropy 

based on the (G-Type-II HCS). The LLF are used to build this Bayesian 

estimator. It is obvious that this estimate has the form of the ratio of two 

integrals, for which there exist no simplified closed forms. In order to 

approximate Bayesian estimator, we use the Tierney and Kadane 
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approximation approach, see lee (2017). The following introduces this 

method with some details.  

let G be smooth, positive function on the parameter space. As a result, the 

posterior expectation of G(𝛾, 𝜃) is calculated: 

𝐺̂ = 𝐸(𝐺(𝛾, 𝜃)|𝑍)) = ∬ 𝐺(𝛾, 𝜃)𝜋(𝛾, 𝜃|𝑍)𝑑𝛾𝑑𝜃 

=
∬ 𝑒𝑛𝜗∗(𝛾,𝜃)𝑑𝛾𝑑𝜃

∬ 𝑒𝑛𝜗(𝛾,𝜃)𝑑𝛾𝑑𝜃
  , 

where 

       𝜗(𝛾, 𝜃) =
log 𝐿(𝛾,𝜃)+log 𝜋(𝛾,𝜃)

𝑛
     and   𝜗∗(𝛾, 𝜃) = 𝜗(𝛾, 𝜃) +

log 𝐺(𝛾,𝜃)

𝑛
. 

The Bayes estimator for the (𝛾, 𝜃) can be constructed as follows using the 

Tierney and Kadane approximation of G(𝛾, 𝜃): 

𝐺̂ = √
|Σ∗|

|Σ |
𝑒𝑛ϑ∗(γ̂𝜗∗ ,θ̂𝜗∗)−𝑛𝜗(𝛾̂𝜗,𝜃̂𝜗), 

where (𝛾𝜗,𝜃𝜗) and (γ̂𝜗∗ , θ̂𝜗∗) maximize the 𝜗(𝛾, 𝜃) and 𝜗∗(𝛾, 𝜃), 

respectively. |Σ∗| and |Σ | denote the minus of inverse of Hessians of the 

𝜗(𝛾, 𝜃) and 𝜗∗(𝛾, 𝜃) at 𝜗(𝛾𝜗,𝜃𝜗) and (γ̂𝜗∗ , θ̂𝜗∗) respectively. In our issue, we 

note that: 

  𝜗(𝛾, 𝜃) =
1

𝑛
[∑ ln(𝛾 + 𝜃𝑧𝑖) + ∑ (−𝛾𝑧𝑖 − (

𝜃

2
) 𝑧𝑖

2)𝑊
𝑖=1

𝑊
𝑖=1 + (𝑛 −

𝑊) (−𝛾𝐾 −
𝜃

2
𝐾2) + (𝑎1 − 1) log 𝛾 + (𝑎2 − 1) logθ − (𝑏1𝛾 + 𝑏2𝜃)]. 

Hence, by resolving the following equations, (𝛾𝜗,𝜃𝜗)  is calculated. 

𝜕𝜗(𝛾, 𝜃)

𝜕𝛾
=

1

∑ (𝛾 + 𝜃𝑧𝑖)
𝑊
𝑖=1

− ∑ 𝑧𝑖

𝑊

𝑖=1

− (𝑛 − 𝑊)𝐾 +
𝑎1 − 1

𝛾
− 𝑏1 = 0, 

and 

𝜕𝜗(𝛾, 𝜃)

𝜕𝜃
= ∑

𝑧𝑖

(𝛾 + 𝜃𝑧𝑖)

𝑊

𝑖=1

−
1

2
∑ 𝑧𝑖

𝑊

𝑖=1

− (𝑛 − 𝑊)
𝐾2

2
+

𝑎2 − 1

𝜃
− 𝑏2 = 0. 
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Furthermore, we calculate |Σ| and it is given by 

|Σ| = [
𝜕2𝜗(𝛾, 𝜃)

𝜕𝛾2

𝜕2𝜗(𝛾, 𝜃)

𝜕𝜃2
−

𝜕𝜗2(𝛾, 𝜃)

𝜕𝛾𝜕𝜃

𝜕𝜗2(𝛾, 𝜃)

𝜕𝜃𝜕𝛾
]

−1

, 

where 

  
𝜕2𝜗(𝛾,𝜃)

𝜕𝛾2
=

1

𝑛
[∑

−1

(𝛾+𝜃𝑧𝑖)2
𝑊
𝑖=1 −

𝑎1−1

𝛾2
],   

𝜕2𝜗(𝛾,𝜃)

𝜕𝜃2
=

1

𝑛
[∑

−𝑧𝑖

(𝛾+𝜃𝑧𝑖)2
𝑊
𝑖=1 −

𝑎2−1

𝜃2
]. 

and  

𝜕𝜗2(𝛾,𝜃)

𝜕𝛾𝜕𝜃
=

1

𝑛
[∑

−𝑧𝑖

(𝛾+𝜃𝑧𝑖)2
𝑊
𝑖=1 ]. 

    Bayes estimator of entropy function under LLF is calculated by taking into 

𝑔(𝛾, 𝜃) = 𝑒
−c

(1−𝛼)
[log(∑ ∑ 𝛾̂𝛼−𝑗∞

𝑗=0 (𝛼
𝑗)

𝛼𝑗𝜃̂𝑖−2

𝑗!
Γ(i+j+1)∞

𝑖=0 )]
. After that, 𝜗𝐿

∗(𝛾, 𝜃) is 

obtained as 

𝜗𝐿
∗(𝛾, 𝜃) = 𝜗(𝛾, 𝜃) −

c

n(1−𝛼)
[log (∑ ∑ 𝛾𝛼−𝑗∞

𝑗=0 (𝛼
𝑗

)
𝛼𝑗𝜃̂𝑖−2

𝑗!
Γ(i + j + 1)∞

𝑖=0 )]. 

    Currently, calculate the following equation 

𝜕𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝛾
=

𝜕𝜗(𝛾, 𝜃)

𝜕𝛾
−

𝑐(𝛼 − 𝑖)

𝑛(1 − 𝛼)𝛾
= 0, 

    and 

𝜕𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝜃
=

𝜕𝜗(𝛾, 𝜃)

𝜕𝜃
−

𝑐(𝑖 − 2)

𝑛(1 − 𝛼)𝜃
= 0, 

   we get (𝛾𝜗𝐿
∗ , 𝜃𝜗𝐿

∗) . Next, we calculate |Σ𝐿
∗|, and the result is given by 

|Σ𝐿
∗| = [

𝜕2𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝛾2

𝜕2𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝜃2
−

𝜕𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝛾𝜕𝜃

𝜕𝜗𝐿
∗(𝛾, 𝜃)

𝜕𝜃𝜕𝛾
]

−1

, 

where 

             
𝜕2𝜗𝐿

∗(𝛾,𝜃)

𝜕𝛾2 =
𝜕2𝜗(𝛾,𝜃)

𝜕𝛾2 +
𝑐(𝛼−𝑖)

𝑛𝛾2(1−𝛼)
 ,

𝜕2𝜗𝐿
∗(𝛾,𝜃)

𝜕𝜃2 =
𝜕2𝜗(𝛾,𝜃)

𝜕𝜃2 +
𝑐(𝑖−2)

𝑛𝜃2(1−𝛼)
 

and  

𝜕2𝜗𝐿
∗(𝛾,𝜃)

𝜕𝛾𝜕𝜃
=

1

𝑛
[∑

−𝑧𝑖

(𝛾+𝜃𝑧𝑖)2
𝑊
𝑖=1 ]. 
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Following that, the Bayes estimate of the entropy function under LLF is 

produced by 

𝐻̂𝑅𝐵𝐿 = −
1

𝑐
log [√

|Σ∗|

|Σ |
𝑒

𝑛𝜗𝐿
∗(𝛾𝜗𝐿

∗ ,𝜃𝜗𝐿
∗ )−𝑛𝜗(𝛾̂𝜗,𝜃̂𝜗)

]. 

 3. Illustrative examples 

Two real data sets are investigated for illustrative purposes and to evaluate 

the statistical performances of the MLEs and Bayesian methods for Rényi 

entropy estimates in the case of the LFR distribution under G-Type-II HCS 
schemes. 

 First real data set 3,1     

The first real life data set is from the data on the strengths of 1.5 cm 

glass fibres, measured at the National Physical Laboratory, England 

(Mahmoudi and Jafari, 2017). Mahmoudi and Jafari examined the goodness-

of-fit of the previous data to the LFR distribution graphically and found that 

LFR distribution fits the data very well. The ordered data are: 

0.39, 0.85 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.8, 
1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 
2.48, 2.5, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 
2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 
3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 
3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.6, 3.65, 3.68, 3.7, 
3.75, 4.2, 4.38, 4.42, 4.7 4.9     

We considered applying G-Type-II HCS to this data. We consider case I ( 
𝑇1 =  2, 𝑇2 =  2.5 and r =  10), case II (𝑇1 =  3, 𝑇2 =  4, and r =  50), and 

case III (𝑇1 =  3, 𝑇2 =  3.5 and r =  60). Table 1 presents the estimation of 

the entropy of the G-Type-II HCS. The Bayesian estimates based on the LLF 

with c = 2 is also included. We found that the Bayesian estimates of entropy 

(𝐻𝑅𝐵𝐿) using Tierney and Kadane approximation produced under the LLF are 

somewhat less than the corresponding MLE of entropy (𝐻𝑅𝑀𝐿𝐸). 

Furthermore, we observed that Bayes estimates are superior to the respective 

MLE in terms of relative bias (RBias) and relative mean square error (RMSE) 

values.  
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             Table1. Estimates of entropy for first real data set 

 𝑇1 𝑇2 r 𝐻̂𝑅𝑀𝐿𝐸 RBais 

𝐻̂𝑅𝑀𝐿𝐸 

RMSE 

𝐻̂𝑅𝑀𝐿𝐸 

𝐻̂𝑅𝐵𝐿 RBais 

𝐻̂𝑅𝐵𝐿 

RMSE 

𝐻̂𝑅𝐵𝐿 

Case 

I 

2 2.5 10 11.79

5 

0.4267 0.0538 11.3628 0.1562 0.0197 

Case 

II 

3 4 50 11.03

2 

0.2173 0.0274 11.2873 0.0450 0.0057 

Case 

III 

3 3.5 60 11.09

0 

0.2132 0.0269 11.3443 0.0404 0.0051 

  

3.2 Second real data set  

We examine the second real data set using the proposed estimators 

from Section 2. We use a set of data supplied by W.B. Nelson in 1970. The 

data set describes the outcomes of a life test experiment in which patterns of 

a sort of electrical insulating fluid were treated to a continual voltage shock. 

The time in minutes it took for each unit to fail was as follows: 0.27, 0.4, 0.69, 

0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.8, 53.24, 82.85, 89.29, 100.58, and 

215.1. We investigated using G-type-II HCS on this data. We will consider 

the case I (𝑇₁ = 4, 𝑇₂ = 15  and 𝑟 = 5), case II (𝑇₁ = 3, 𝑇₂ = 30 , and 𝑟 =

9 ) and case III (𝑇₁ = 3, 𝑇₂ = 60  and 𝑟 = 12). Table2 presents the estimation 

of the entropy under the G-Type-II HCS. The Bayesian estimates based on 

the LLF with c = 2 is also included. We discovered that the 𝐻𝑅𝐵𝐿 created 

under the LLF using the Tierney and Kadane approach are less than the 

comparable 𝐻𝑅𝑀𝐿𝐸. In terms of RMSE and RBais values, we also found that 

Bayes estimates are superior to the corresponding MLE. 

             Table2. Estimates of entropy for second real data set 

 𝑇1 𝑇2 r 𝐻̂𝑅𝑀𝐿𝐸 RBais 

𝐻̂𝑅𝑀𝐿𝐸 

RMSE 

𝐻̂𝑅𝑀𝐿𝐸 

𝐻̂𝑅𝐵𝐿 RBais 

𝐻̂𝑅𝐵𝐿 

RMSE 

𝐻̂𝑅𝐵𝐿 

Case 

I 
4 15 5 8.7365 0.3802 0.0982 8.5643 0.2597 0.0671 

Case 

II 
3 30 9 8.5149 0.7188 0.1856 8.4944 0.2090 0.0540 

Case 

III 
3 60 12 8.2328 0.7855 0.2028 8.1366 0.2706 0.0699 
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4. Simulation 

In this section, we evaluate how well the entropy estimations based on 

simulated data under GHCS Type II performed. Different sample sizes, linear 

failure rate distribution parameter values, and time point 𝑇2 were included in 

the simulation, all of which used the identical 𝑇1 value. Each time, the 

procedure is repeated 10000 times. Newton-Raphson is used to compute the 

corresponding MLEs. With regard to the diffuse prior distribution (𝑎1 =

𝑎2 = 𝑏1 = 𝑏2 = 0.0001), all Bayes estimates are computed by using the 

Mathematica ® 13 software. Entropy estimates based on Bayes are produced 

for LLF. Additionally, Bayes estimates' approximate closed forms have been 

derived using the Tierney and Kadane approximation approach. Bayes 

estimates for c = 2 is produced under LLF. Additionally, several methods 

have been considered for calculating RBias and RMSE of each estimate. And 

tables 3-10 present these findings in tabular form. On the basis of the RMSEs 

and RBias, we provide discussions. In tables 3-10, RMSE and RBias values 

of all estimates of entropy are presented for various choices of 𝑇1 ,𝑇2, 𝑛 and 

generalized type-II hybrid censoring schemes. We have tabulated RMSE and 

RBias values of the respective MLE in the sixth and seventh columns of the 

table. The last two columns correspond to the RBias and RMSE of entropy 

using Lindley's approximation based on informative prior. Bayes estimates 

based on informative prior under the LLF function. In general, we observed 

that the RMSE values decrease as the sample size n increases. For a fixed 

sample size, the RMSE values decrease generally as the number of 

generalized type-II hybrid censored samples 𝑇₁ increases. For a fixed 

𝛾, 𝜃, 𝛼, 𝑟 and 𝑇1, it seems that the RBias values increase as the stopping time 

𝑇₂ increase. The RBais and RMSE values of the entropy estimates a  𝛾 = .3,

𝜃 = 0.5  and 𝛼 = 10 have the smallest values among other values use. For a 

fixed 𝜃 the RBias values decrease in general as the shape parameter γ 

increase. For a fixed 𝛾, 𝜃, 𝛼, 𝑟 and 𝑇1 the RBias values decrease in general as 

the parameter 𝛼 increase Furthermore, we observed that Bayes estimates are 

superior to the respective MLE in terms of RMSE and RBias values. In 

particular, respective Bayes estimates under LLF of entropy are better than 

the corresponding MLE. For estimating the entropy, the choice c = 2 seems 

to be a reasonable choice under LLF. 
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Table 3. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .1, 𝜃 = .5, 𝛼 = 5 , 𝑟 = 50, 𝑇₁ =

0.7 𝑎𝑛𝑑 𝑇₂ 

                                     𝑇₁ = 0.7  

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .1 .5 5 0.671715 0.094995 0.555489 0.078558 

50 1.7    0.771525 0.10911 0.508473 0.071909 

 2    0.91317 0.129142 0.473349 0.066942 

 1.5    0.61524 0.06152 0.518146 0.05181 

100 1.7    0.701571 0.07016 0.480699 0.04807 

 2    0.872209 0.087221 0.451245 0.04512 

 1.5    0.574175 0.0468812 0.339833 0.0277473 

150 1.7    0.514245 0.0419879 0.324757 0.0265163 

 2    0.680005 0.0555222 0.344319 0.0281135 

 1.5    0.547321 0.0419776 0.330066 0.0253149 

170 1.7    0.481571 0.0369348 0.320637 0.0245918 

 2    0.641891 0.0492308 0.32562 0.0249739 

 1.5    0.539 0.0381131 0.323529 0.0228769 

200 1.7    0.459175 0.0324686 0.316863 0.0224056 

 2    0.626041 0.0442678 0.319178 0.0225693 

Table 4. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .1, 𝜃 = .5, 𝛼 = 10 , 𝑟 = 50, 𝑇₁ =
0.7 𝑎𝑛𝑑 𝑇₂ 

                                     𝑇₁ = 0.7  

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .1 .5 10 0.54742 0.077416 0.503773 0.0712443 

50 1.7    0.566 0.080046 0.464712 0.0657202 

 2    0.684683 0.096829 0.441924 0.0669417 

 1.5    0.49538 0.04954 0.404318 0.040432 

100 1.7    0.562541 0.05625 0.421152 0.042115 

 2    0.680649 0.06806 0.422229 0.04222 

 1.5    0.471643 0.0385095 0.332712 0.0271658 

150 1.7    0.488831 0.0399129 0.308559 0.0251937 

 2    0.671634 0.0548387 0.330088 0.0269516 

 1.5    0.395966 0.0303692 0.327673 0.0251314 

170 1.7    0.423242 0.0324612 0.307622 0.0235935 

 2    0.66542 0.0510216 0.323413 0.0248046 

 1.5    0.334379 0.0236442 0.322718 0.0228196 

200 1.7    0.393901 0.07853 0.304206 0.0215106 

 2    0.656436 0.046417 0.294766 0.0210675 
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Table 5. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .3, 𝜃 = .5, 𝛼 = 5, 𝑟 = 50, 𝑇₁ = 0.7 𝑎𝑛𝑑 𝑇₂ 

                                     𝑇₁ = 0.7  

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 0.3 0.5 5 0.549166 0.077664 0.426213 0.0602756 

50 1.7    0.604201 0.0854469 0.489442 0.0692175 

 2    0.717828 0.101516 0.484953 0.0544406 

 1.5    0.500019 0.05 0.256533 0.025653 

100 1.7    0.584096 0.05840 0.245078 0.0508 

 2    0.7075 0.07076 0.244217 0.024421 

 1.5    0.461982 0.0377207 0.252364 0.0206054 

150 1.7    0.536624 0.0438152 0.227127 0.0185449 

 2    0.695026 0.0567487 0.234135 0.019117 

 1.5    0.443884 0.00340444 0.243685 0.0196898 

170 1.7    0.412448 0.0316334 0.216564 0.0166097 

 2    0.688577 0.0528114 0.219268 0.0168171 

 1.5    0.421927 0.0298348 0.226253 0.0159985 

200 1.7    0.374635 0.0264907 0.210029 0.0148513 

 2    0.68712 0.0485867 0.215591 0.0152446 

 

Table 6. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .3, 𝜃 = .5, 𝛼 = 10, 𝑟 = 50, 𝑇₁ =
0.7 𝑎𝑛𝑑 𝑇₂ 

                                     𝑇₁ = 0.7  

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 0.3 0.5 10 0.499118 0.070586 0.324451 0.0458842 

50 1.7    0.488872 0.069137 0.329008 0.0465288 

 2    0.609661 0.086210 0.343258 0.048544 

 1.5    0.442989 0.04430 0.29967 0.02997 

100 1.7    0.443379 0.04434 0.25569 0.02557 

 2    0.603416 0.06034 0.244719 0.024472 

 1.5    0.442609 0.0361389 0.244348 0.0199509 

150 1.7    0.430237 0.0351287 0.226709 0.0185107 

 2    0.589254 0.0481124 0.22169 0.0181009 

 1.5    0.32068 0.024595 0.24321 0.019858 

170 1.7    0.407714 0.312702 0.215952 0.0165628 

 2    0.583811 0.0447763 0.213095 0.0163436 

 1.5    0.271615 0.0192061 0.222424 0.0157278 

200 1.7    0.374935 0.0265119 0.209018 0.0147798 

 2    0.580172 0.0410244 0.201625 0.0149641 
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Table 7. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .1, 𝜃 = .5, 𝛼 = 5 , 𝑟 = 50, 𝑇₁ = 1 and 𝑇₂ 

            𝑇₁ = 1 

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .1 .5 5 0.598877 0.0846939 0.521628 0.0737694 

50 1.7    0.538437 0.0747323 0.496858 0.0702664 

 2    0.746535 0.105576 0.4892 0.0691833 

 1.5    0.563221 0.05632 0.456885 0.045689 

100 1.7    0.521315 0.05213 0.457632 0.045763 

 2    0.666184 0.06662 0.485116 0.048512 

 1.5    0.420875 0.0424748 0.294052 0.024007 

150 1.7    0.471728 0.0385165 0.2293821 0.0239904 

 2    0.646781 0.0528094 0.292141 0.0238532 

 1.5    0.407634 0.0312641 0.292792 0.0224561 

170 1.7    0.463624 0.0355583 0.283749 0.0217625 

 2    0.626429 0.0480449 0.272462 0.0208969 

 1.5    0.403575 0.0285371 0.278625 0.0197017 

200 1.7    0.455137 0.0321831 0.282282 0.0199604 

 2    0.621807 0.0439684 0.26098 0.0184541 

 

Table 8. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .1, 𝜃 = .5, 𝛼 = 10 , 𝑟 = 50, 𝑇₁ = 1 and 𝑇₂ 

            𝑇₁ = 1 

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .1 .5 10 0.523968 0.0741003 0.416594 0.0589158 

50 1.7    0.504615 0.0713633 0.40025 0.0566039 

 2    0.629359 0.0890049 0.409587 0.040958 

 1.5    0.506638 0.050664 0.379869 0.037987 

100 1.7    0.50196 0.05120 0.370373 0.037037 

 2    0.597368 0.05974 0.383128 0.0541825 

 1.5    0.404107 0.0397573 0.266653 0.0220415 

150 1.7    0.454493 0.0424748 0.27899 0.022445 

 2    0.592771 0.0542541 0.2664 0.0217515 

 1.5    0.391179 0.030004 0.25894 0.0198598 

170 1.7    0.434325 0.0333112 0.261327 0.0200444 

 2    0.58601 0.0414371 0.264289 0.0202701 

 1.5    0.36303 0.0256701 0.233427 0.0165058 

200 1.7    0.398343 0.0281671 0.257063 0.0181771 

 2    0.584825 0.0448541 0.238611 0.168723 
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Table 9. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .3, 𝜃 = .5, 𝛼 = 5 , 𝑟 = 50, 𝑇₁ = 1 and 𝑇₂ 

            𝑇₁ = 1 

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .3 .5 5 0.418915 0.0592436 0.408354 0.05775 

50 1.7    0.465801 0.0658742 0.451322 0.063827 

 2    0.606256 0.0857375 0.373135 0.052769 

 1.5    0.364173 0.36417 0.216643 0.02166 

100 1.7    0.436948 0.04370 0.203199 0.023120 

 2    0.56876 0.05688 0.21606 0.02161 

 1.5    0.355251 0.0290061 0.184074 0.0150296 

150 1.7    0.398832 0.0328645 0.169076 0.013805 

 2    0.542827 0.0443217 0.176790 0.0144282 

 1.5    0.298528 0.0228961 0.173913 0.0133385 

170 1.7    0.440651 0.0337964 0.167519 0.0128481 

 2    0.521007 0.0399594 0.176521 0.0135385 

 1.5    0.30085 0.0212733 0.173072 0.012238 

200 1.7    0.405022 0.0286394 0.156731 0.0110825 

 2    0.508072 0.035923 0.175798 0.0124308 

 

Table 10. The relative MSEs and biases of entropy estimators with MLE and 

the Bayes for selected values 𝛾 = .3, 𝜃 = .5, 𝛼 = 10 , 𝑟 = 50, 𝑇₁ = 1 and 𝑇₂ 

            𝑇₁ = 1 

     𝐻̂𝑅𝑀𝐿𝐸 𝐻̂𝑅𝐵𝐿 

n 𝑇2 γ θ α    RBais   RMSE    RBais  RMSE 

 1.5 .3 .5 10 0.384587 0.054389 0.317785 0.0449416 

150 1.7    0.412124 0.058283 0.325124 0.0459795 

 2    0.423217 0.059852 0.337523 0.07733 

 1.5    0.371681 0.0372 0.204021 0.02040 

170 1.7    0.336272 0.03363 0.199346 0.01993 

 2    0.365497 0.03655 0.205028 0.020503 

 1.5    0.232351 0.0189714 0.193227 0.0157769 

150 1.7    0.28256 0.0240709 0.18937 0.015462 

 2    0.364087 0.0297276 0.196322 0.0160296 

 1.5    0.223971 0.0171778 0.181869 0.0139487 

170 1.7    0.270431 0.0207411 0.183132 0.0140456 

 2    0.354772 0.0271945 0.019209 0.0147327 

 1.5    0.196629 0.0139038 0.179749 0.0127102 

200 1.7    0.26903 0.0184588 0.180314 0.0127501 

 2    0.353442 0.0249922 0.186948 0.0132192 
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5. Conclusion 

In this article, we take into account both the traditional and Bayesian 

estimations of an LFR's entropy under the G-Type-II HCS scheme. We use a 

flexible prior-based Bayes estimation of the entropy. We construct the Bayes 

estimates by discarding the Tierney and Kadane approximate method under 

LLF because the Bayes estimators cannot be produced in closed form. 

Moreover, simulation studies were conducted to evaluate the impact of 

various censoring parameter selections on the entropy estimations. In terms 

of RMSEs and RBias, the Bayes estimators of entropy are preferable to the 

MLE. For Bayes estimation of entropy, LLF appears to be a logical choice. 
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لتوزيع معدل الفشل الخطي على أساس    Rényiتقدير إنتروبي 
 العينات المعممة من النوع الثاني الهجين الخاضعة للرقابة. 

 د. دينا سمير التلباني 

 جامعة بنها  –كلية التجارة  –مدرس بقسم الإحصاء والرياضة والتأمين 

 الملخص  

القانون  في  الأصل  في  تعريفه  تم  الذي  الإحصاء  في  أساسي  هو مصطلح  الانتروبي 

لتوزيع    Rényiالثاني للديناميكا الحرارية. في هذا البحث، قمنا بتقدير مقياس انتروبي  

يتم  حيث  الهجين.  الثاني  النوع  من  معممة  البيانات  تكون  عندما  الخطي  الفشل  معدل 

 Linexلامكان الأكبر. وبالاعتماد علي دالة خسارة  الحصول على التقديرات لطريقة ا

، تم اقتراح تقديرات طريقة بايز. ولتوضيح   Tierney and Kadaneوأيضا تقريب  

الأساليب المقترحة تم تحليل مجموعتين من البيانات الحقيقية وأيضا تم عمل دراسة  هذه

فة إلى ذلك، تم اقتراح العديد المحاكاة لتقييم أداء التقديرات بأحجام عينات مختلفة. بالإضا

متوسط الخطأ التربيعي   حجام العينات المختلفة وذلك مثل معيارأمن المعايير لمقارنة  

التحيز النسبي للعينات الخاضعة للرقابة المختلفة. حيث تبين من خلال   ومعيارالنسبي  

روبي تفوق طريقة البيانات الحقيقية ودراسة المحاكاة أن تقديرات بايز للإنت  علىالتطبيق  

 الامكان الأكبر. 

 الكلمات الافتتاحية 

تقدير بايز، البيانات المعممة من النوع الثاني الهجين الخاضعة للرقابة، توزيع معدل 

 الفشل الخطي، تقريب تيرني وكاداني 

 


