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Approximated Characteristics of Bivariate Discrete
Time Series with Missing Data

Dr. Amira El-Desokey; Dr. Mohamed Alargat and Dr. Mohamed Ghazal

Abstract- The extended finite Fourier transformation is an effective
mathematical method for analyzing time series data with vector values. In this
study, the transformation is applied to (n + m) time series data, and the
approximations obtained are used to create usable features for further
analysis. This technique could be useful in the field of climate science, where
missing data can be a significant challenge. Researchers may more accurately
analyses climate data using the extended finite Fourier transformation, even
when some observations are missing at random. This can lead to a better
understanding of climate patterns and trends over time, which is necessary
for forecasting future changes and developing effective mitigation policies.
Overall, the extended finite Fourier transformation is an interesting
development in the field of time series analysis, with several possible
applications in a variety of fields. We should expect even more spectacular
developments in the coming years as academics continue to explore its
powers and perfect its methodologies.

Key Words- Discontinuous Time Stable Processes; Tapered Data; Fourier
transform, Unobserved Data, Whishart Distribution.

1. Introduction

Bivariate discrete time series with missing data are commonly
encountered in various fields such as economics, finance, and engineering.
The analysis of such data is essential for understanding the underlying
patterns and relationships between the variables. However, missing data can
pose a significant challenge in accurately estimating the characteristics of
these time series. To address this issue, researchers have developed various
methods for approximating the characteristics of discrete bi-variate time
series with missing Values. The importance of this research lies in its
potential to improve our understanding of complex systems and inform
decision-making processes in various domains. This research aims to provide
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an overview of the most recent approaches for approximating the
characteristics of bivariate discrete time series with missing data and their
applications in different fields. The importance of Bivariate Discrete Time
Series with Missing Data lies in its ability to provide a framework for
analyzing and understanding complex data sets that contain missing values.
In many real-world scenarios, data is often incomplete due to various reasons
such as measurement errors, equipment failures, or human errors. This can
lead to biased or inaccurate results if not handled properly. The paper
proposes a method for approximating the characteristics of bivariate discrete
time series with missing data using a combination of imputation and
estimation techniques. This approach allows researchers to make more
accurate predictions and draw meaningful conclusions from incomplete data
sets. Furthermore, several different sectors can benefit from the proposed
approach like finance, economics, social sciences, and engineering. It can
help researchers identify patterns and relationships between variables that
would otherwise be obscured by missing data. Overall, the importance of this
research lies in its potential to improve the accuracy and reliability of data
analysis in various fields by providing a robust framework for handling
missing data.Several authors, including D. R. Brillinger [1], R. Dahlhaus [3],
M. Ghazal and E. Farag [4], and A. El-Desokey [9] who investigated "a few
characteristics of discontinuous extended Fourier transformation of missing
data," have looked into the problem of predicting the power spectrum, the
auto-covariance function, and continual -time processes' spectrum measure,
"The spectrum Analysis of firmly fixed continual time process" and
"Approximated Characteristics for spectrum Predictions of Second-Order
with Missing data" were researched by Ghazal, Mokaddis, and El-Desokey
[10,11].

The following is a brief overview of the manuscript: the first section is
"Introduction," to our investigation; we create approximated characteristics
of estimations for I and a(4), In Section 2. In Section 3, we explored the
Approximated characteristics of the Extending Fourier transform with missed
data. Our theoretical investigation into the climate is applied in Section 4.
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2. Approximated Characteristics Of Estimates required
parameters T , a(1)

Throughout this section, we focus on the difficulty in identifying an m -
vector T and a M X Nfilter {«(A)}in such a way that

0o Sat-05) @.1)

U=—0

Which is quite actually closer to () . Assume that we quantify proximity

using the XM Hermitian matrix.

E{[h(t)—l“— ia(f—ﬂ)ﬂﬁ)][h(f)—l:— ia(f—ﬂ)ﬁl)]T} ; (22)
A=—0

A=—00 =

Theorem 2.1

Assume (n+ m)a steady second-order process with vector values formatted

as
a()=[5(t) no)].t=041,%2,... (2.3)
With 6(¢) , n values and 7(¢r), m values.
Using mean
ES(t) =95, Eh(t) =9, , (2.4)
and auto-covariance functions
Efs@+ )~ 911600~ 8.1 )= 9552,
E{8(t+2) - 951000 - 4,1 = 9n(A), (2.5)
E{n(t+ )-8, 1100) - 9,1 |= 9 ()

Consider that (1) , $,,(4) are completely summable, that 7,(g), f5,(g) and
f,s(g)are provided by

-\o. -
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f35(@ =D Y 855 (2) Expleigh)
A=—0

fa(2) =) Y 95,(2) Expl-igh)
A=—0

(2.6)

Sin(®) =) Y 9D Expl-igh)

A=—0

for —o< g<w,

Thereby f;5(g) is a matrix that is nonsingular, —o < g <. Hence, the,

[, and «(1) minimizing (2.2) as,

r=49, _{ ia(ﬂ)}% =4, -J(0)Y; ,

A=—0
2.7)
and
a(2)=2x)"! j:f(r) Expliltydr |

(2.8)

where

J(©)=frs(@)fss(2)" . (2.9)

Summability of the {a(1)}-filter. The Minimal accomplishment is

27

[ 1@ =125 150 fin (M.
(2.10)

In this case, the transferring function of 7 X7 filtering that provides a
required minimal is denoted by J(g), which is the regression coefficient of

a complex case of 7() on o(¢) at frequency g .

Proof.

Assume J(g) to be the transfer function of (1) and define it as (2.8). So we

can show,
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E{[h(t) - i a(t =)o (D)][n)-L - ia(f -5 }
A

=—0 A=—w0

= Cov[h(t)-T - ia(l — )]+ E[h(t)-T - ia(l — D)S()]x
A

=—© A=—0

<) -T - Y alt- D3]
A

=—0

= E{[h(l)—r— ia(f—i)&i)]—ﬂh(ﬂ—f— i:ot(t—ﬂﬁ(ﬂ)]]X
A

— A=—0

T
x ([h(t) ~L= Y alt- A3 - B~ - Y alt- /1)5@)]] } +
A=

A=—0 —o0

+ E[h(r) -T - ia(t ~AO(A)E[A(E) T - ia(t ALY

A=—0 A=—0
= [Un®= @15 @ fa O+ [0 f35(0)= sVt (0)%

X[ (@) fas(®) = fys @ de+18, =T = D alt= D518 ~L= Y alt=1)8T
A=—0

A=—0 =

E{[h(f)—l_"— ia(f—/lw(ﬁ)][h(f)—l:— ia(l—/lw(i)]T}Z
A=—0

= A=—0

2 [ (@)= 5 S () (DM

Suppose

9-T= S at-18,=0 | (2.10)
A

=—0

SO
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C=9 - Y alt-1)%=9-J0)9 ,

A=—0

and
J(@) f55(0) = frs(@)=0

=  J@O) =/ fss (7)71 ,

With (2.7) and (2.8), the Minimal accomplishment score is defined by
2z
[Un @)= 115015 @ fa (27
0

3- The Approximated Characteristics Of The Extending
Fourier Transform With Missed Data.
Let 07 (g) represents the definition of the discontinuous extended finite

Fourier transformation:

-1

T-1 2
o (2) = {hz (‘Bi,%))z} D RO z,(t)expl-igt], —0<g <o
t=0 =0

(3.1)
Such that

z,O=n,O@,t), a=12,.mn(n,m) , (3.2)

Probabilistic stable observations are denoted byd,(r),%,(r), and a
sequence of random variables that fit Bernoulli distribution, 7,(), is a

stochastically independent of s,(),7,(r) , and meets the condition that,

1 ,1£6,(¢),h ,(t)areexisted;
7a (1) = {0 , otherwise.
(3.3)
Let n,(¢) be a randomly distributed variable that is independent and
identical.
Pln, @) =11=p, .
Pln,(1)=0]=q, ,
3.4)

SOy -
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Where p, +¢q, =1. For any ¢ outside the interval [0,77], the data window
functional R (1) =R’ (¢/T),t €(0,T) has limited variation and

disappears.

Assumption
If ®0(),teR,a=1r has no non-vanishing values and its variation is limited,

then,

-1 [
Aal,...ﬂk(g) :Z[ng,') (t) ]exp{_igt} 5

=0 | j=1

for-o<g<ow and q,,...a, =12...n. According to the following theorem, we
may obtain an approximation to the characteristics of z, (), which are
expressed as (3.2).
Theorem3.1

We assume that z, (1) =n,()a,(t) ,a=12,.,min(z,m) is a missing data set for a
stable stochastic process 8, (1),4,(t) ,a=1,2,..,min(n,m), and thaty_(») is a series of

stochastic process following the Bernoulli distribution, variables satisfying
(3.1) and (3.4). Then,

E{z,()}=0 ,
(3.5)

Cofz, ()2, <t2>}=pala{'9”“) S (1) } , (3.6)

s (A)  J(0)3s55(D)I ()"

COV{Za] (tl)azaz (IZ)}:

_ffalaz (v)exp{ivA}dv _ff W)explivAtd9J ()"
=Paay| 0 . 3.7

0

J@ [ fu, @ expivaido J@) [ S0, @) exptivRdw ()

—0 —00

Proof

Considering that 7,(¢) is independent and X (¢) is a strongly stable series,
we obtain (3.5).

-\o¢ -
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Cowlz, (1)), 2, (1))} =
= Covly, V@, (.1, (@, ()]

Moy )84 (0] [14, (68, (t2) ]
= Cov N

Ma, (% )ha, (t) Na, (1) a, (t3)
0 @08, (010,208, (1) 0, (103, (), ()R, (1)

Ual (tl )h a (tl )77a2 (t2 )5a2 (tZ ) 77411 (tl )h a (tl )77(12 (t2 )h a, (tZ ) '

Eln,, (¢, (6)|covs, (11).8,.(6)] Eln,, ()., t))coVls, )., )]
Eln,, @, @)V, 1).6,, )] Eln, @, ) e, @)1, @)

palaz COV[5G1 (tl )’ 5a2 (t2 )J pulaz Cov15a| (tl )9 '+ J(T)5a2 (t2 )J

P, CoT+I@)8, (11,60, ()] Pa, CVT+ ()8, (1), T +J(0)S,, (13)]

Paya, ‘95“1% t =15) Paa,%5,6,, (i~ )J(2)"

Paa, J(T)lgaal,saz (t=13)  Pag, J(T)!gaﬂl,saz (t, —t;)J ()"

=p lgalaz (Zl _t2) lgalaz (tl ) )J(T)T
“e J(T)Lgalaz (tl _t2) J(T)'ga,az (tl -1 )J(T)T

Resulting from that stability and independence,

S, (4 G0y M (@)
CVOV{ZH1 (tl)’zaz (12)}: pa102|: alaz( ) aluz( ) (T) :l ,

J(0)y 0, (A) J(0)8,,, (DI ()"
and
[fuw@eplivniao [ 1., @ewptivaidw ()
COV{ZHI (tl)7zaz (tZ)}:pala2 70000 -

IO [ S @30 i023d0 I@) [ £, @) explivzdul (]

—0 -0
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Definition: Whishart Distribution: Let's pretend dand j; are vectors that
statistically independent in R*, and Vec[s 7] is a normal vector in 2k

dimension. When this occurs, we say thatz =5+i%, the complex random
vector, follows the complex normal distribution. Three parameters,T", 7, and
V', characterize this distribution.

r=E@), (=E(@-D)@-0)"], V=E@-T@-1"],

Where matrix transposition denoted by =’ , complex conjugate denoted by @
. In this case, I can be a vector that follows complex distribution, ¢can be a
definite positive Hermitian in a complex matrix of k dimension, and for7 ,

the symmetric relations matrix. The matrix -V 7y is also non-negative
finite since /¢ and ¥ satisfy this condition. Covariance matrices of § and
may be calculated from ¢/ and ¥ using the corresponding formulas.

Gys = E(6—T;)(E—Ty)' ] = %Re[mm,

G = ELO = T5)(h =T 1= S~ + V],

Gy = El(h-T;)(0 ~T») 1= %Im[€+V],

Gy = El(h-T3)(h-T;) | = %Re[f— V1,

Furthermore, inversely
l=Gss+ Gy +i(Gps — Gg) 4 = Gss — Gy, +1(Grs — Gg,) -
Theorem3.2

Consider z,(f) denote missing values about a stable probabilistic
process[s, (1) #,0] ,a =1,...,min(n,m), let 1,(t) denotes a randomly
Bernoulli sequence satisfying (3.3) and (3.4). If we define 6" (g)to be (3.1)
and assume that R’ (g) holds true, then the distribution of 5" (g) is
approximated by

o (g)=

-voT-
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[ Fuee @90 (@1 -v.82 =000 [ £ @@ W) (810,80 0)d0
R

N§+m 0’paa R ’(3‘8)

0. Paya, J’J(r).fa,a2 (u)l//f,\r,,)z (g —v.g, —v)dv J-J(r)fa.az (U)'/’,(JQZ (81— 0, gy ~ V)V
Such that,

vl (i =vgs =)= 4D o] ZSR‘% )me(zz)x
=0 t,=0
xexp{-il(g, —0), —i(g, —0), 1} (3.9)
Proof
Given (3.1) and (3.5), It may be shown that
E{,(n)}=0, (3.10)

Covlp™(g).00(g,)}=
2,

T W2y T
—COV“ZHZ(‘R(”O ))Z} ‘Rm(tl) z, (tl)exp igity {272’2( m(t ))Z} ‘R(?(tz)za2 (tz)exp{— igztz}
1,=0

6=0 =0

= 2n) |4l o[’ Zﬂ%m(rl)exp igi ZSR( (1) expligst ICovie, (1).2,, (1)

4,=0 =0
T-1
= Paa, 27)” [A“) o] Zm(”(tl)exp{ igit} Y R (1) expligyty
4,=0 1,=0

N Gty —1y) Gt —1y)
ety =) T3 (t —1)J ()"

and

Corp (.80 )= 2y U O S RO ) expl i ZSR‘ (1) expligty ) x
=0

[fom@explivt,—midv [ £y, @explive —0)}dw (@)
XPaay| e .

IO [ fus @i =110 T@) [ o0, @) explivt - 0)}dw @)

-\ov -
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71 71
~ 1
—en ' 1D O] TR0y 80 w)x
=0 120

[fow o [ for, @@ dv
XPaa, exp{—iglt1 +ig,t, +ivt; —ivt, - -

IO [ S )40 I@ [ f10, @@ v

T-1 T-1
_ 1
= 2n 4D O] 0 @) Y w0
1,=0

1,=0

[fow@)ds [ fon @@ v
X Paya, XPI-l(g) —0)y —i(gy —0)L1) 7, -
IO [ Sy @48 J@) [ fo, @) do

_ Q, Q,
2
where

t,=0

© T-1 T-1
_ 1
o (u){(zzr) D @' S 500 S %O (1)
e =0

xexp{—i[(gl —V)t; —i(g, —V), ]}}du

= Pua, Ifalaz O, (g -v,g, —v)dv,
R

In the same way

D = Puy [ fues @I VD) (20,8, - 00,
R

Q= Py, IJ () fa, W) (€1 = 0,25 —0)dL
R

and

-YOA -



Scientific Journal for Financial and Commercial Studies and Research 5(1)1 January 2024

Dr. Amira El-Desokey; Dr. Mohamed Alargt and Dr. Mohamed Ghazal

Q= Pa, [ IO faa, IO L) (81 -0, 8, ~0)dv
R

Equation (3.8) is derived from (3.10) and (3.11), thus completing the proof.

By fitting g, =g,=g ,g.g.gcr 1nto Eq. (3.11), we get the following

corollary,

Corollary 3.1
The following property is hold for the dispersion of 87 (g) if we define

0 (g),a=12,.,min(n,m), g <R tobe as (3.1):

[ fute=my@iran [ 1t =nI@ viE i

e ; . (312
a (&)= Pug I IOV (g - By D () J J(0) foa(g =) @) v 8 (h)ah (3.12)

R R

SO

vD@=n 1D O 40 @]

Where 47 (g),a=12,...,min(n,m), g € R is the assumption variable.

Proof
According to (3.11), we obtain

[fu@wDe-949 [ 1000 v (g-9)as
R R

O (=943 [0, V@ v (g =948
R R

DaflT)(g) =Paa J‘

This is when g, =g,=g ,g€R and a,=a, =a, a=1,..,min(n,m).

Letting ., we get (3.12)thus ,g-v ="

Theorem 3.3

Let ! (g),a=1,.,min(n,m) is the base for any geR if and only if it
meets the following conditions.

1. J‘l//g)(g)dgzl,azl ..... min(n,m), ge€R (3.13)

—0

-109 -
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2. Lim J l//[(lg)(g)dg = Lim'[l//;?(g)dg =0, Vr>0,a=1,..,mn(nm),geR.  (3.14)
T—o0 T—w

3. LimJ‘«//,g)(g)dgzl, YV a=1,.,mn(n,m),r>0, geR. (3.15)
T—o

=r

Theorem 3.4
It follows from theorem 3.3 that if the function of spectrum density
f2a(8) ya=1,.,min(n,m), SR is finite continually at point s—4 sz and D (5),

a=1,..min(n,m), § € R is a function meets its characteristics, then

fu@  fu@J@)]

Lim Do (g) = p, ’
P08 = Pl [ e I @)

a=1,..,min(n,m). (3.16)

Proof

In order to demonstrate the validity of formula (3.16), we must prove the
following.

Lim
T—x

fual®) L@@ }:
T @) T (@) (@)

Do, (2) —pa{
We have from corollary 3.1

<

Do (g)- pa{ ful® L@@ }

J@) foulg) J@)foa(@)J ()

< I Jul@=1)  fulg=DIE) H ful® @@ }
IO fulg =0 T@ f(g =IO | IO fual®) JO)foa(@) (@)

yil (h)dh <

< I [ Julg =0 fulg=hI@ H ful®  funl@l @ }

D (hydh +
JOfoa(g =1 J@) foulg =IO | | T f(@) @) fW(0)I@) Ve ()

-0

+P

aa

D (hydh +

Le—y~

 fulg-h) fulg-BIET H ful@  fu(@I@T }
O (g =0 JO) fo(g-DI@ | [J@)fo(g) (@) (@) (D)

+ P RO

r

[ fulg-h) fug-hI@T H fu@  fu(@I@ }
@) faa(g =) J@) fu(g=DI@) | |JO) fia(@) J@) (@)D

1. -
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=B, +B,+B;.

Now that 7, , (»is a continuous function at point/ = g,a;,a, =1,...,min(n,m) g € R,

we can write

r

B2 :Pan.

—r

w o (hydh

[ fulg=h  fulg=hJ@)" H fu@  ful@I@ }
J@ (@~ J@ fua(@=DIOT | |J@) fa(@) J@) fa(@)I @)

_, ﬂ{ Fua@ =) fou(2) Fualg =M@ = £ }

W (hydh <
T (@ D)= @) foa (@) @) fo(g ~ DI @) =T (@) fra()T @) |

<¢ [wDwan<¢ [vD an,

Thus B, <¢ . Therefore, B, is extremely small if any ¢ is very small; hence,

B,=0.If f,(g) a=1,..,min(n,m),geR is limited by a constant value M, then

B, szLIwg)(h)dhﬁo,

—o0

based on the property (3.14). similarly 8, ———o0, then,

T—

T—w

pe(g)- pw[ ful®  fu@I@T }

J(0) foa(g) J@)foa(@)I (@)

It completes up the proof for the theorem.

Lemma 3.1
If RV (1)t e R, a=1n is a limited function of data window, has limited

fluctuations, and has a value of zero outside of the interval [0, T — 1], then

T-1 1
ng“(t)wjm(a”(z)d/l, (3.17)
=0 0
where,
1 ¢ T 1 T —
?Zolsn; () ——— jmg Y(AdA, a=1n ,T=12,... (3.18)
t= 0

Lemma 3.2
-3 -
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If *REIT )(t),t eR, a= 1,_r satisfies the Lipschitz condition and is limited within a

constant M,

~3

-

T T
B0 +7) - )(t)‘éﬁ , (3.19)
i=0
then,
! T-1
D RO +0RD @) expl-igr)- Y RO ORD(0) expl-ige) < Mc|A), (3.20)
t=0 t=0

For every constant value ¢, 2=[~(T-1),(T-1)jand g €[-7, 7].
Lemma 3.3

Ifevery g,,g, €[-7, 7], (g, —g,) #(mod 27) and R (1), reR,
a=1,...,min(n,m) are limited by a constant value M where the Lipschitz
condition is satisfied (3.19), then:

M
Covp" (2,07 (g3)) < 3 x

ZﬂJ E(ﬂ?? (& ))2 (SRE? (gZ))Z

ft,=0

T-1 T-1
X{M;(gllgz)/z 2 s D+ D[S, (/1)‘[|1|+1]}, (3.21)

e=—T+1) e=-T+l
For every a,,a, =1,...,min(n, m).
Theorem 3.5

All g,,g, e[-n,7], (g, —g,) #(mod27) and R (1), e R, a =1,..,min(n,m) 1S
limited, and

o0

DA+

T=-00

s W] <0, (3.22)

So,

SATY -
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Jim Covf ™ (2,07 (g)}= 0, (3.23)
for all a,,a, =1,...,min(n, m).

Proof

Both Lemma 3.3 and Lemma 3.1 are used directly in the proof.
4. Applications

Our theoretical investigation will be applied to a climatological
Example as detailed in the part that follows.

4.1 Investigating Temperature Level with Solar Irradiance

This research interprets a monthly series of data that illustrates the
monthly average temperature records and solar irradiance in Libya. The
records were obtained from the Libyan meteorological office from January
2012 until December 2021.

4.1.1 Temperature-Level Investigations

In this section, we shall compare the outcomes of our study of the
survey model of a firmly stable time process (temperature Level) including
a few missed data—against the outcomes from the classical setting, in
which all data are available.

Let H,(1)=n,0)5,(t) ,a=12,..n be the quantity of interest, suchd,(t),(t=0,1L..)
is an firmly stability n — time vector process, and 7, (r) is a Stochastic
variables in Bernoulli sequence that are not dependent on §,(¢) satisfying
formulas (3.3) and (3.4). If we assume that J,(1),(r=(12...,T] is monthly mean

of temperature values and that all of the values are obtainable, then
n=1, H,(t)=4,(t), represents the classical case and assumes that some

observations are missing at random (i.e.,7=0,).

Now, we comparison these research results with and without the missing data
in table (4.1.1).
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Table (4.1.1) Comparing Of Research Outcomes With and Without
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the Missing Values

Series without missed data

Series with missed data
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PACEF of the seasonal variation

PACF of the seasonal variation

ARIMA Model: Temperature level
ARIMA(2,0,0) = (01,112

Final Estimates

Type Co-ef. SE Co-ef. ] P
AR 1 0.3447 0.1035 3.33 0.001
AR 2 0.1521 0.1030 1.49 0.142
SMA 12 0.8449 0.0838 10.08 0.000
Constant  0.002437 0.002640 093 0.356

Differencing: 0 regular, 1 seasonal of order 12

Number of values: Original series 108, after differencing 96
SS = 1.03223 (back forecasts excluded)

MS = 001120 DF=92

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Residuals:

Lag 12 24 36 48
Chi-Square 15.1 260 365 415
DF 8 20 32 +4
P-Value 0.057 0203 0269 0.585

ARIMA Model: Temperature level
ARIMA(2,0,0) » (0,1.2)12

Final Estimates

Type Co-ef. SE Co-ef. T P
AR 1 0.5701 0.1059 538 0.000
AR 2 -0.0154 0.1058 -0.16  0.883

SMA 12 1.5640  0.1034 I15.11  0.000
SMA 24 -0.6503  0.1015 -6.40  0.000
Constant  0.0011288 00009347 121 0.231

Differencing: 0 regular, 1 seasonal of order 12
Number of values: Original series 108, after differencing 96
Residuals: SS =0.775841(back forecasts excluded)
MS = 0.008525 DF=91
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 106 209 442 535
DF 7 19 31 43
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4.1.2 Studying The Solar Irradiance

Using a firmly stable model of time process (Solar irradiance), we will
compare our results—where some data are missed—to the classical results,
where all values are recorded. We assume that the data 7 ,(¢),1=(,2,.,1] is the

value of the average monthly records solar irradiance, thus all records are
unmissed, n=1, H,(t)=h,(¢), which would be the standard model, now we

further assume that there are some missed data in a randomly, i.e. 7=0,, so that
n, () is a Bernoulli series of stochastic variable that does not depend on #,()

in any predictable way, satisfying equations (3.3) and (3.4). The results of this
comparison, with and without missing values, are shown in table (4.1.2).
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Table (4.1.2) Observing the Differences between the Outcomes with
and Without the Missing Solar Irradiance.

Series without missing values

Series with missing values

Time Sarles Plot of solar (Xt) Time Sarias Flot of Tasti
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PACF of the difference seasonally

PACF of the difference seasonally

ARIMA Model: solar irradiance without missed
data
ARIMA (3,0,0) = (0,1,2)12

Final Estimates of Parameters

Type Co-ef’ SE Co- ef T P
AR 1 0.6444 0.1036 6.23 0.000
AR 2 0.1998 0.1219 1.65 0.106
AR 3 -0.3298 0.1005 -3.28 0.001

SMA 12 09058 0.1118 8.08 0.000
SMA 24 -0.0571 0.1638 -0.36 0.728
Constant  -0.1523 0.8092 -0.18 0.852
Differencing: O regular, 1 seasonal order 12

ARIMA Model: solar irradiance with missed
values

ARIMA (3,0,0) =< (0,1,2)12

Final Estimates for Parameters

Type Co-ef SE Co- ef T P
AR 1 0.5508 0.0975 5.66 0.000
AR 2 04378 0.1045 4.18 0.000
AR 3 -0.4198 0.0971 -4.34 0.000
SMA 12 1.0428 0.1088 9.59 0.000
SMA 24 -0.2016 0.1578 -1.29 0.206
Constant  -0.0519 0.7479 -0.06 0.946

Differencing: O regular, 1 seasonal order 12

Number of records: Original series 108, after differencing 96

Residuals: SS = 113198 (back forecasts excluded)
MS = 1259 DF =90
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square  10.0 16.0 36.1 44.8
DF 6 18 30 42

P-Value 0.124  0.588 0.241 0.359

Number of data: Original series 108, after differencing

96

Residuals: SS = 122928 (back forecasts excluded)
MS = 1367 DF =90

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 8.6 214 412 513
DF 6 18 30 42

P-Value 0.207 0.267 0.086 0.16
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4.1.3 Examining the Linear Regression of Solar Irradiance

and Average Temperature

This section adjusted the model of linear regression that representing
the significant relationship between the rate monthly of solar radiation (watt
/ m?) and the monthly average records of temperature level from year 2012 to
year 2021. Our results, which represented for some missed data, will be
compared to the classical results, which assume that all values are existent.

Leta(=[s¢) ne), where 6() is a mean records of temperature time
process and 7(f) is an average solar radiation time process; we initially assume
that all records are obtainable (7=1,), and then we consider that some
observations are missing (1=0,) at random. Table 4.1.3 displays our study
results.

Table (4.1.3) the Results Are Compared Of Regression Analysis

Outcomes With and Without Missing Data

Without missing data With missing data
The equation of regression is The equation of regression is
solar Irradiance = - 10.4 + 12.8 Temperature level Solar Irradiance = - 9.8 + 12.8 Temperature level
Predictor Co-ef SE Co-ef T P Predictor Co-ef SE Co-ef T P
Constant -10.43 2237 -0.48 0.643 Constant _9.84 22 71 _0.44 0.662
temperature 12.886 1.054 12.03  0.000 temperature 12.826 1.075 11.85 0.000
S =00.2158 R-Sq=57.8% R-Sq (adj)=57.8%
Analysis-of Variance $=58.5264 R-Sq=57.1% R-Sq(adj)=56.1%
Source DF SS MS E P Analysis of Variance
Regression 1 523988 523988 144.50 0.000 Somnes DF 88 Ms B p
Residual Error 107 384353 3627 Regression 1 480535 480535 140.29 0.000
Total 108 908341 Residual Error 107 363086 3426
Total 108 843621
Probability Plot of REST1 Probability Plot of RESIZ
Normal Hormal

Fean 014
- Siber 50,93
n 108 ]

1

]

xS
P-valua 0416 5

'
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E
0
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200 100 [ 100 200
100 200 RESIZ

200 100

0
RESI1

o 5 m Normalized plot of residuals
Standardized residuals normal plot

4.1.4. Conclusion

1. The investigation the standard time process and time process with
missed values produced the same outcomes. (see Tables 4.1.1 and
4.1.2).

2. Ascan be seen in Table 4.1.3, the results of the study of the model of
linear regression between the averages monthly of solar irradiation
and the monthly average temperature level with a few missed values
were identical to those of the study of the traditional linear regression
model.
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