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Abstract

In this article, we introduce a new three-parameter odd log-logistic power
inverse Lindley distribution and discuss some of its properties. These
include the shapes of the density and hazard rate functions, mixture
representation, the moments, the quantile function, and order statistics.
Maximum likelihood estimation of the parameters and their estimated
asymptotic standard errors are derived. Three algorithms are proposed for
generating random data from the proposed distribution. A simulation study
is carried out to examine the bias and root mean square error of the
maximum likelihood estimators of the parameters. An application of the
model to three real data sets is presented finally and compared with the fit
attained by some other well-known two and three-parameter distributions
for illustrative purposes. It is observed that the proposed model has some
advantages in analyzing lifetime data as compared to other popular models
in the sense that it exhibits varying shapes and shows more flexibility than
many currently available distributions.

Keywords: Lambert function, maximum likelihood estimation, order
statistics, power inverse Lindley distribution, Stochastic ordering.
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1. Introduction

"Survival and reliability analysis is a very important branch of
statistics. It has many applications in many applied sciences, such as
engineering, public health, actuarial science, biomedical studies,
demography, and industrial reliability. The failure behavior of any system
can be considered as a random variable due to the variations from one
system to another resulting from the nature of the system. Therefore, it
seems logical to find a statistical model for the failure of the system. In
other applications, survival data are categorized by their hazard rate, e.g.,
the number of deaths per unit in a period of time. The modeling of survival
data depends on the behavior of the hazard rate. The hazard rate may
belong to the monotone (non-increasing and non-decreasing hazard rate)
or non-monotone (bathtub and upside-down bathtub [UBT] or unimodal
hazard rate). Several lifetime models have been suggested in statistics
literature to model survival data. The Weibull distribution is one of the
most popular and widely used models in life testing and reliability theory.
Lindley (1958) suggested a one-parameter distribution as an alternative
model for survival data. This model is known as Lindley distribution.
However, the Weibull and Lindley distributions are restricted when data
shows non-monotone hazard rate shapes, such as the unimodal hazard rate
function (Almalki and Nadarajah 2014; Almalki and Yuan 2013)."

"There are several real applications where the data show the non-
monotone shape for their hazard rate. For example, Langlands et al. (1997)
studied the data of 3878 cases of breast carcinoma seen in Edinburgh from
1954 to 1964 and noticed that mortality was initially low in the first year,
reaching a peak in the subsequent years, and then declining slowly.
Another real problem was analyzed by Efron (1988) who, using head and
neck cancer data, found the hazard rate initially increased, reached a
maximum, and decreased before it finally stabilized due to therapy. The
inverse versions of some existing probability distributions, such as inverse
Weibull, inverse Gaussian, inverse gamma, and inverse Lindley, show
non-monotone shapes for their hazard rates; hence, we were able to model
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a non-monotone shape data. Erto and Rapone (1984) showed that the
inverse Weibull distribution is a good fit for survival data, such as the time
to breakdown of an insulating fluid subjected to the action of constant
tension. The use of Inverse Weibull was comprehensively described by
Murthy et al. (2004). Glen (2011) proposed the inverse gamma distribution
as a lifetime model in the context of reliability and survival studies.
Recently, a new upside-down bathtub-shaped hazard rate model for
survival data analysis was proposed by Sharma et al. (2014) by using
transmuted Rayleigh distribution. Sharma et al. (2015) introduced the
inverse Lindley distribution as a one-parameter model for a stress-strength
reliability model. Sharma et al. (2016) generalized the inverse Lindley into
a two-parameter model called “the generalized inverse Lindley
distribution.” Finally, a new reliability model of inverse gamma
distribution referred to as “the generalized inverse gamma distribution”
was proposed by Mead (2015), which includes the inverse exponential,
inverse Rayleigh, inverse Weibull, inverse gamma, inverse Chi square, and
other inverse distributions."

"Lindley (1958) proposed the Lindley distribution in the context of
the Bayes theorem as a counter example of fiducial statistics with the
probability density function (pdf)

fGiB) =L+ y)e; y,5> 0. (M

Ghitany et al. (2008) discussed the Lindley distribution and its
applications extensively and showed that the Lindley distribution is a
better fit than the exponential distribution based on the waiting time at the
bank for service. The Lindley distribution has been extended by different
researchers including Zakerzadeh and Dolati (2009), Nadarajah et al.
(2011), Shanker and Mishra (2013), Ghitany et al. (2013), Ashour and
Eltehiwy (2015), Eltehiwy (2019), Alizadeh et al. (2017). The inverse
Lindley distribution was proposed by Sharma et al. (2015) using the
transformation X = % with the pdf
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o) =L (2 e, pr>0. @

1+8 \ x3
where Y is a random variable having pdf (1)."
"Another two parameters inverse Lindley distribution introduced by
Sharma et al. (2016), called “the generalized inverse Lindley distribution,”

is a new statistical inverse model for upside-down bathtub survival data
that uses the transformation X =Y« with the pdf

aB? (1+x* _l%
fO;B,a) = m(xzaﬂ) e x%; B,a,x >0, 3)

ith Y being a random variable having pdf (1). Note that Barco et al. (2017)
also obtained the generalized inverse Lindley distribution by taking the
transformation X =Y « where Y follows inverse Lindley distribution
known as power inverse Lindley distribution (PIL) with the same pdf."

"The pdf (3) can be shown as a mixture of two distributions as follows:

fG B, @) = pfi(x) + (1 = p)f2 (%),

where,

B 2 B
p=—=—  f1= ap e x*, x>0 and fzzxaie_x_“, x> 0.

xat+1 2a+1

We see that, PIL is a two-component mixture of inverse Weibull
distribution (shape a and scale ) and generalized inverse gamma
distribution (with shape parameters 2, @ and scale ), with mixing
proportionp = /(8 + 1)."

Gleaton and Lynch (2004, 2006) introduced a new family of
distributions which is called the Generalized log-logistic family of
distributions. The cumulative distribution function (cdf) of this family is
given by

G (x;6)°

FF(x:0,9) = s onmemo® “4)
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where 8 > 0 is the shape parameter, G(x; ) is the cdf of the baseline
distribution, G (x; &) = 1 — G(x; &) is the survival function and ¢ is the set
of the parameters of the baseline distribution G (.). In addition, the pdf of
the family is

f(x;60,8) =

08(x:6)6 (6:8) P 1G (x;6)0 1
(6660 +G ()0

This family was called later the odd log-logistic family of distributions. If
the baseline distribution possesses a closed form cdf, the generated new
distribution will also possess a closed form cdf. One can easily show that

FO0,6)
log[ﬂx;e.f)] _0

G(x;8)
log[E(x;f)

Therefore 6 is the quotient of the log-odds ratio for the generated and
baseline distributions."

"Now, by letting G(x; &) in (4) to be the cdf of the power inverse
Lindley distribution, where ¢ = (B, a) is the set of parameters, we can
obtain a new extension of the power inverse Lindley distribution, called
the odd log-logistic power inverse Lindley (henceforth, OLL-PIL)
distribution. The cdf, pdf and hazard rate function of this distribution are
given by"

6
(1+ﬁ)ee_x_g

6 _98B _B
(1+W) e x%+ 1—(1+ﬁ)e x“]

F(x;a,B,0) = > (5

forx > 0,0,5,a > 0 and the corresponding pdf is given by

_Bo _ B 6-1
wop(Farn)e ()] 1 (thma)e ™

9 2 b (6)
B\,
1_(1+(1+B)x“)e x ] }

fOsapB,0) =

6 _68
(1+ﬁ){(1+—(1+g)xa) e X%+
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h(x;a,B,0) =

X _B_g 6-1
aGﬁ%%)e x [(1+—(1+g)x“)] (7)

oY -
6 _6B B
ﬁ —_—

1_(1+(1+ﬁ)x“)e xa] }

B XX
{(1+(1+ﬁ)x“) e ¥+
"We write X~OLL — PIL(a, 3, 8)if the pdf of X can be written as (6). The
new distribution is very flexible in the sense that it can be skewed and

B
B _P
(1+B) 1—(1+W)€ x%

symmetric depending upon the specific choices of the parameters.
Furthermore, the associated cdf is in closed form. Consequently, this
distribution can be applied to modeling censored data too. This is a major
motivation to carry out this work. Furthermore, in reliability engineering
and lifetime analysis, we often assume that the failure times of the
components within each system follow the exponential lifetimes; see, for
example, Adamidis and Loukas (1998) among others and the references
therein. This assumption may seem unreasonable because, for the
exponential distribution, the hazard rate is a constant, whereas many real-
life systems do not have constant hazard rates, and the components of a
system are often more rigid than the system itself, such as bones in a
human body, balls of a steel pipe, etc. Accordingly, it becomes reasonable
to consider the components of a system to follow a distribution with a non-
constant hazard function that has flexible hazard function shapes."

"An interpretation of the OLL-PIL distribution can be given as
follows: Let X be a lifetime random variable having power inverse Lindley
distribution. The odds ratio that an individual (or component) following
the lifetime X will die (fail) at time x is y = G(x; a, ﬁ)/E(x; a, ). Here,
one can consider this odds of death as a random variable, say Y. Now, if
we model the randomness of the “odds of death” using the log-logistic
distribution with scale parameter 1 and shape parameter 6, (Fy(y) =
y?/[1+ ¥9]) for y > 0. Then we can write

PT(Y < y) = FY(G(x; a,ﬂ)/E(x; a,ﬁ)),
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which is given by (5), see Cooray (2006) for more details regarding this
interpretation.

Plots of the pdf are shown in Fig. 1. The pdfs appear always unimodal.
The mode moves more to the right and the pdf becomes less peaked with
increasing values of . The mode moves more to the right and the pdf
becomes less peaked with increasing values of 6. The pdf becomes more
peaked with increasing values of. The behavior of h(x) in (7) of the OLL-
PIL for different values of the parameters a,f and 6 are showed
graphically in Fig. 2."

4 T T L T
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Figure 1. Pdfs of the OLL-PIL model for selected &, and a.
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Figure 2. Hazard rate functions of the OLL-PIL model for selected 8, and a.

"Because the hazard rate function of extended inverse Lindley

distribution is always unimodel function in X, the new distribution is also

a unimodal. Figure 2 illustrates the behavior of the hazard rate function of
the OLL-PIL distribution at different values of the parameters involved.
Concerning the hazard rate function of the odd log logistic power inverse

Lindley distribution, which is shown in Fig. 2, it notably has the shape of
an upside-down bathtub, therefore being unimodal in x.

This attractive flexibility makes the OLL-PIL hazard rate function
useful and suitable for non-monotone empirical hazard behaviors which

are more likely to be encountered or observed in real life situations."
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"We hope that this new distribution can be applied to describing
lifetime data more properly than the existing distributions. The major
motivation of introducing the OLL-PIL distribution can be summarized as
follows. (i) The OLL-PIL distribution contains several lifetime
distributions as special cases, such as the power inverse Lindley (PIL)
distribution due to Barco et al. (2017) for 8 = 1: (i) It is shown in Section
2 that the OLL-PIL distribution can be viewed as a mixture of
exponentiated power inverse Lindley (EPIL) distributions introduced by
Jan et al. (2018). (ii1) The OLL-PIL distribution is a flexible model, which
can be widely used for modeling lifetime data. (iv) The OLL-PIL
distribution exhibits non-monotone hazard rates but does not exhibit a
constant hazard rate, which makes this distribution to be superior to other
lifetime distributions. (v) The OLL-PIL distribution outperforms several
of the well-known lifetime distributions with respect to some real data
examples."

Special cases:

e For 8 = 1, we obtain the power inverse Lindley distribution.

e For ¢ =1, we obtain the odd log-logistic inverse Lindley
distribution.

e For 8 = a = 1, we obtain the inverse Lindley distribution.

"The rest of the article is organized as follows: In Section 2, we
discuss some structural properties of the OLL-PIL distribution. Section 3
deals with the classical method of estimation (using maximum likelihood)
of the model parameters of the OLL-PIL distribution. In Section 4, three
real data sets are considered as an example to illustrate the applicability of
OLL-PIL distribution. In Section 5, a simulation study is conducted to
verify the efficacy of the said estimation procedure. In Section 6, we
provide some concluding remarks."
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2. Structural properties

In this section, we discuss some structural properties of the OLL-PIL
distribution.

2.1 Mixture representations for the pdf and cdf
The EPIL distribution, introduced by Jan et al. (2018) has the pdf

o a,8,0) = L (L) & [(14 2] n0pa>0 @®)

We write EPIL(a, B, 6) if the pdf of X can be expressed as (8). In addition,
the cdf of the EPIL model is

_£1°
Fepi(x; ,B,6) = [(1 + (1+f§’)x“) e x“] ,x>0,0,8,a>0 9)

Now, we show that the OLL-PIL distribution can be viewed as a mixture
of EPIL distributions. Using the generalized binomial expansion, the
numerator of (5) can be
k
B\ o~y g\ £
[(1 T (1+[3’)x“>] €= Zk:o A [(1 T (1+ﬁ)x“) e ’

where a;, = Z?:k —1k(z) (D and the denominator of (5) can be written as

6
- B\,
(1 + (1+[>’)x"‘> e+ [1 - (1 + (1+[>’)x"‘) e
K
_ yoo B -£
- 2k=0 bk [(1 + (1+ﬁ)xa) e x ] )
where by, = a; + —lk(z). Therefore, the cdf of the OLL-PIL distribution
can be expressed as

B k
(1+$)e_x_“] B k
Sk = Zlcio=0 Ck [(1 + (1+[;)xa) e xa] )

00
Yk=0 Ak

F(x) =

_B
(1+ﬁ)e x“:|

Z}?:o bk
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where ¢y = ? = 0 and for k > 1 we have
0

¢k = byt [a — by Yoy brcr—r].
Or equivalently, we can write the cdf of OLL-PIL as
F(x) = Y=1 ciFeprn (6 k@, B) = Xz Crv1Fepr (6 k + 1, @, 8),(10)
where Fgp; (x; k + 1, a, B) denotes the cdf of the EPIL distribution with

parameters k + 1, a and 8. We note that )\ cxeq = 1.

By differentiating equation (10), the pdf of the OLL-PIL distribution can
be expanded as

f(x) = Xkeo ke fepi(x k + 1, a, B), (11)

where fgp(x; k + 1, a, §) denotes the pdf of the EPIL distribution with
parameters k + 1, @ and £5.

2.2 Moments

The rt" ordinary moment of X is given by

Ur =EX") = f_oo x" f (x)dx. Then, using Eq.(11), we obtain

, T oo T |i+1-Z+(k+ DB (i+1-L
Uy = (,B)“Zk=0 2i=0(’§)ck+1(k + 1)“ [ [(k+1)(,8+1])](i+1 )

h

For r** moment to exist, the constraint & > r must be satisfied.

The moment generating function My (t) = E(e™) of X can be derived

from Eq. (11) as follows:

[i+1-2+(k+1)|r(i+1-3)
[(k+1D)(B+1)]+1

My () = 520 20 Bnn0 = [BCk + DIa(¥) s
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2.3 Incomplete moments

"The main applications of the first incomplete moment refer to the
mean deviations and the Bonferroni and Lorenz curves. These curves are
very useful in economics, reliability, demography, insurance, and
medicine. The s®" incomplete moment, say say 715(t), of the OLL-PIL
distribution is given by

ns(t) = [) x°f (x)dx,

Ns () =
s (k+1)(B+1))

a ta

[(k+1)(B+1)]H*1

s [i+1—§+(k+1)ﬁ]y(i+1—

B)e Tiro Z20(“)epsn (k + 1

»(12)

where y(.,.) is the lower incomplete moments. “The first incomplete
moment of the OLL-PIL distribution can be obtained by setting s = 1 in
(12). The first incomplete moment is related to the Bonferroni and Lorenz
curves, the mean residual, and mean waiting times. The Bonferroni and
Lorenz curves are important in economics, reliability, demography,
insurance, and medicine. The Lorenz curves, say LO(x), and Bonferroni
curve, say BO(x), are defined by"

®
LO(x) =7

and

LO(x)
ForL—-piL(x;:0,8,a)

BO(x) =

2.4. Stochastic Orders

"Stochastic ordering of positive continuous random variables is an
important tool for judging the comparative behavior. Suppose X; is
distributed according to (Egs. 5 and 6) with common parameter [ and
parameters 6; and «a; for i =1,2. Let F; denote the cumulative
distribution of X; and let f; denote the probability density function of X;."
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A random variable X; is said to be smaller than a random variable X, in
the

I.  Stochastic order (X; < X,) if F;(x) = F,(x) for all x.
II.  Hazard rate order (X; <p, X;)if hy(x) = h,(x) for all x.

II.  Likelihood ratio order (X; <;, X;) if ; 18 decreases in x.
2

"The following results due to Shaked and Shanthikumar (1994) are well
known for establishing stochastic ordering of distributions"

X1 S Xo=> X <pr Xy 2 X; <t X

The OLL-PILD is ordered with respect to the strongest “likelihood ratio”
ordering as shown in the following theorem:
Theorem 2.1. Let X,~OLLPILD(6,,B:,a;) and X,~OLL—

PILD(Hz,Bz, az). If ﬁl = Bz, and92 = 91 (Or lfﬁz = ﬁland 91 = 92),
then X1 SLT‘ Xz and hence X1 Shr XZ and X1 SSt Xz.

Proof. Straight forward and hence omitted.
Setting a; = a,

Case 1: f; =, and 0, > 6; we obtained <

dx (M

as an increasin
f1(x)) g

function of x.

o — : i f2(x) . .
Case 2: B = 3, and 8, = 6; we obtained ™ (f1 (x)) as an increasing
function of x.
This implies X; <;, X, and hence X; <, X, and X; < X,."
2.5. Quantile Function

"Let X denotes a random variable with the probability density function
(Eq. 6). The quantile function, say Q(p), defined by F(Q(p)) = p is the
root of the equation

B 1y
_ B N, oz — (B 6
(1 + (1+ﬁ)Q(p)“) ¢ p'lo+(1-p) /e’ (13)
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for 0 < p < 1. Multiplying (13) both sides by e 1% we get,

1
B B\, ~(1+8+555) _ —(+BIp Joe=O4P)
(1 B+ Q(p)“) ¢ po+(1-p) /o

Using the Lambert W function which is the solution of the equation
W (2)e" @, where z is a complex number, we have"

—(1+ B)p Toe~0+B) o I
W( p’o+(1—p)/e ) - <1 e Q(p)“>

_(1+ﬁ)p1/ge—(1+ﬁ) .
p/6+(1-p) 6

—(1+ B)p /oe=0+B) o B
W= ( plo+(1—p)e ) - <1 i Q(p)“>

The negative Lambert W function of the real argument

Which upon solving for Q(p) results in

1
1 _1
101 ~(1+B)p 6e~+B\|
=|-1-=—=w_ .

Using above equation, the quartiles of the OLL-PIL distribution can be
determined.

2.6. Asymptotic properties
Let X~OLL-PIL then the asymptotic of equation (5), 6) and (7) as x = 0

are given by

F(x)~(x%)t9 as x >0

a@ﬁe
f(x)~xa9+1 as x > 0
adp®
h(x)"‘m as x = 0

The asymptotic of equation (5), 6) and (7) as x — o are given by
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_8B
1 —F(x)~(%) exexa as x — oo
ﬁ /] _%
e x
f)~0pa (i) mmmm a5 X = o
h(x)~j0/i0(1 as x - ©

"This attractive flexibility makes the OLL-PIL hazard rate function useful
and suitable for non-monotone empirical hazard behaviors which are more
likely to be encountered or observed in real life situations."

2.7. Distribution of order statistics

"Order statistics make their appearance in many areas of
statistical theory and practice. Suppose that X;, ..., X, are a random
sample from an OLL-PIL distribution. Let X;.,, denote the i-th order
statistic. The pdf of X;.,, can be expressed as (see Arnold et al., 1992)."

fin(x) = Kf('x)Fi_l(x){l — F()}t
- Kz?;é(_l)j (nj—]) FOOF(x)/T1 ) (14)

n!
where K =

(i-D)!(n=0)r"

We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive integer n (n > 1)

o i\ oo 1
(Zi:oaiul) = Xizo dniu',
where the coefficients d,,; (for i = 1,2,...) are determined from the
recurrence equation (with d,, o = ag)

dn,i = (iao)_l Z;n=1[m(n + 1) - i]amdn,i—m-

We can demonstrate that the density function of the i-th order statistics of
an OLL-PIL distribution can be expressed as

fin = ka:o }?o:o m;,k,jfEPIL(x'r +k+i+j,ap), (14)
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where fgp;(x; @, 8,0) denotes the density of EPIL distribution with
parameters a, f and 6 and the coefficient m; , ; = m;, ;(i,n)’s are given
by

. nl(r+1cre (1) aj ok

Mr k) = D= ) k4 )’

In which the coefficients c,'s are defined in subsection 2.1 and quantities
ajyi—1) can be determined such that a;,;_; o = C{H_l and for k > 1

aj>'k+i—1.k = (ke 25:1[‘1(/ +1i) — k]Cq+1 a;+i—1,k—q'

"Equation (14) is the main result of this section. It reveals that the pdf of
the OLL-PIL order statistic is a linear combination of EPIL distributions.
Therefore, several mathematical quantities of these order statistics like
ordinary and incomplete moments, factorial moments, and moment
generating function, mean deviations and others can be derived using this
result."

3. Maximum Likelihood Estimation of Parameters

Let X, ..., X;, be a random sample of size n from OLL-PIL. Then, the
log-likelihood function is given by

L(a,B,y,6) = Xiz1In f(x;),

= n[ln(a) + 2In(B) + In(6) — In(1 + B)] + X, In(1 + x{)
—(2a+ DXz In(x) =B Xim, %% + (6 — 1) XLy Inft;(1 — ¢)]
—2X [t + 1 -1)°] (15)

B
where t; = (1 + (1+f3)x“) e x,
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The MLEs &, B, 0 of @, B, 0 are then the solutions of the following non-
linear equations:

0 n oo x® In(x;) - -
—aaﬁ(a,ﬁ,y, 0) - + E —xf‘ T 2 El In(x;)) + B El x; % . In(x;)
1= 1=

i=1
" (©
+(O -1 Y, )y 111t
0 1-(1-tpf1
—26 X 1t(a)te+(1—t)9 =0, (16)
2 LBy, 0) = 2D _wn e (6 )T, et
6/? a;,B:V, ,B(B+1) i= 1 i i=1 t
" Y e
A=) Xim i — 200t e =0 (17)
g L( 0) =
ae arﬁ; V, -
t? In(t)+(1-t)? In(1-t) _
S+ X In[t;(1-t)] - 23, Frot)? =0 (18)
where
(a) B 1+x; -£
a x%
t; __ﬁ( 2a+1)e t ln(xi)a
b -k
B _ e’ e B
g T xF@+p)? xf (xf‘(1+,8)+1)

The above non-linear system of equations is solved by numerical iteration
technique and maximum likelihood estimates are obtained.

For the three parameters OLL-PIL distribution, all the second order
derivatives exist. Thus, we have the inverse dispersion matrix is
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] 0 Vii Vip Vi3
BI~N\B || Var Vo Vo
a @ Va1 Vi Va3
oL ou
V11 e V13 692 e aeay
V-1l=— =—E| o ], (19)
Vai o Va3 %L 2%
203y T oy2
Equation (19) is the variance covariance matrix of the OLL —
PIL (6,8, a)
T I . o
11 7 502 "12 7 3p9p 137 360a 22 7 ap2°
9%L 9%L
Vaz = aBda 33 7 9a2

The second derivatives of £ is in Appendix.

By solving this inverse dispersion matrix, these solution will yield the
asymptotic variance and co-variances of these ML estimators for 8,
f and @. By using (Eq.19), approximately 100(1 — @)% confidence
intervals for 8, B, @ and y can be determined as

9iZz/I711 BiZE/vzz aiZE/V%
2 2 2

where Za is the upper a-th percentile of the standand normal distribution."
2
4. Data Analysis

" In this section, we demonstrate the applicability of the OLL-PIL
model for a real data. The data listed in Table 1 represents the average
wind speed in Denmark reported in Hibatullah et al. (2018).
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The applicability of EEILD is demonstrated by using some
statistical tools suchs as Kolmogrov-Smirnov statistic, Akaike information
criterion (AIC) defined by —2log L + 2q , Bayesian information criterion
(BIC) defined by—2log L + q log(n), where q is the number of estimated
parameters and n is the sample size, and are compared with other
distributions. AIC and BIC values estimates the quality of each model
relative to each of the other models. The MLEs of the parameters are given
in Table 3 and the statistical values mentioned above are computed and are
given in Table 2. These values indicate that the proposed distribution fits
well to the data compared to other tested distributions. The best model
would be given by the highest value of log L and the lowest values of the
AIC and BIC. Thus, the OLL-PIL distribution is compared with the
Lindley (L) distribution, the power Lindley (PL) distribution, the inverse
Lindley (IL) distribution, the power inverse Lindley (PIL) distribution, the
Weibull (W) distribution, and the Gamma (G) distribution."

Table 1. The average wind speed in Denmark.
1.04525 | 2.28740 | 2.44529 | 2.68460 | 1.50003 | 3.33749
2.78426 | 4.79976 | 13.1893 | 5.45061 | 2.01266 | 1.27453
2.54918 | 1.32359 | 2.16495 | 1.32353 | 1.74341 | 2.29751
6.90446 | 1.71967 | 3.78884 | 1.48582 | 3.11761 | 3.26983
2.46577 | 3.52471 | 2.20266 | 5.10102 | 0.80668 | 2.65993
2.83905 | 0.38095 | 0.71543 | 3.00342 | 2.65187 | 4.53323
2.09819 | 10.9028 | 16.4941 | 1.77735 | 4.64156 | 5.73434
0.47927 | 1.38314 | 3.14792 | 4.88295 | 1.65586 | 2.09596
1.41378 | 1.89628 | 7.72747 | 0.80280 | 6.95507 | 1.52554
4.77888 | 1.03046 | 2.84926 | 5.02584 | 5.83996 | 2.71060
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Table 2:Comparison criterion
Models log L AIC BIC K-S | P-value
statistic
Lindley —129.586| 261.172| 263.266| 0.0988 | 0.4087
Inverse Lindley —132.532] 267.063| 269.157| 0.1146 | 0.2423
Power Lindley —129.022| 262.044| 266.233| 0.0982 | 0.4156
Power Inverse Lindley | —129.671| 263.343| 267.531| 0.1113 | 0.2723
Gamma (G) —129.639| 257.278| 261.467| 0.1012 | 0.3795
Weibull (W) —128.960| 259.920| 266.109| 0.0955 | 0.4507
OLL-PIL -123.611 | 253.222 | 259.506 | 0.0718 | 0.7582
Table (3): Parameters MLES
Models a B 0
Lindley (L) -—-- 0.49297| ----
Inverse Lindley (IL) 1 2.50067| 1

Power Lindley (PL) 1.09454| 0.43377| 1
Power Inverse Lindley | 1.26995| 2.68507| 1

(PIL)
Gamma (G) 1.95473| 1.73284| ---
Weibull (W) 1.33872| 3.72481| ----
OLL-PIL 0.22158]| 1.31936| 7.162

The OLL-PIL takes the smallest K-S test statistic value and the largest
value of its corresponding p-value. In addition, it takes the largest log
likelihood. Therefore, OLL-PIL provides the best fit to this data.

5. Generation Algorithms and Monte Carlo Simulation Study

"In this section, the algorithms for generating random data from
OLL-PIL distribution are given. A simulation study was also conducted to
check the performance and accuracy of maximum likelihood estimates of
the OLL-PIL model parameters." The Simulation study is performed using
the statistical software Mathcad 14.
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5.1 Generation algorithms

"In this subsection, different algorithms that can be used to generate
random data from OLL-PIL distribution are presented.

Algorithm I. (mixture form of the inverse Lindley distribution)
1. Generate U;~uniform (0,1),i = 1, ..., n;
2. Generate V;~ inverse Exponential (8),i =1, ...,n;

3. Generate G;~inverse Gamma (2,4),i =1, ..., n.

ul/® B
f —— < L=V,
4. if oo = 148 then set X; =V,

i

G’ i=1,..,n.

Y % otherwise, set X, =

Algorithm II. (mixture form of the Extended inverse Lindley
distribution)

1. Generate U;~uniform (0,1),i = 1, ...,n;
2. Generate Y;~ inverse Weibull (a,),i = 1, ...,n;
3. Generate S;~Generalized inverse Gamma (2,a,8),i =1, ...,n.

yl/®

. B . .
4. if —5 e = 1+B then set X; =Y;, otherwise, set X; =S;,i

.n.

Algorithm III: (inverse CDF)

1. Generate U;~uniform(0,1),i = 1, ...,n;
2. Set

1 -
11 —(1+B)p 6e~+B\|
X, — _1 I "
1 l ,8 ,8 W—1 < p1/9+(1—p)1/9

[
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5.2 Monte Carlo simulation study

"In this subsection, we study the performance and accuracy of
maximum likelihood estimates of the OLL-PIL model parameters by
conducting various simulations for different combinations of 5 sample
sizes with two sets of parameter values. Algorithm II was used to generate
random data from the OLL-PIL distribution. The simulation study was
repeated N = 10,000 times each with samples of size n =25, 50, 100, 200,
400 combined with parameter values (/): 8 = 0.7, =4, « = 0.8, and (/]):
6 =15=0.6,a=2 . Four quantities were computed in this
simulation study: (i) Average bias of the MLE 9 of the parameter 9 =

a,pB,0: % N (8 —=19); (i) Root mean squared error (RMSE) of the

MLE 9 of the parameter 9 = a, 8, 6: [%Z?’:l(ﬁ — 19)2]0.5;(1'1'1') Coverage
probability (CP) of 95% confidence intervals of the parameter ¥ =
a, B,0; (iv) Average width (AW) of 95% confidence intervals of the
parameter 9 = a, 8, 8. Table 4 presents the Average Bias, RMSE, CP and
AW values of the parameters , fand 6 for different sample sizes.
According to the results, it can be concluded that as the sample size n
increases, the RMSEs decrease toward zero. We also observe that for all
the parameters, the biases decrease as the sample size n increases. The
results show that the coverage probabilities of the confidence intervals are
quite close to the nominal level of 95% and that the average confidence
widths decrease as the sample size increases. Consequently, the MLE’s
and their asymptotic results can be used for estimating and constructing
confidence intervals even for reasonably small sample sizes.

-1051 -



Scientific Journal for Financial and Commercial Studies and Research 4(1)1 January 2023

Dr. Mahmoud Eltehiwy and Mohamed Hamouda

Table 4: Monte Carlo simulation results: Average Bias, RMSE, CP and AW

I I
Parameter n Average Average
bias RMSE | CP AW bias RMSE | CP AW
0 25 0.649 0.388 | 0.961 | 0.784 0.656 0.866 | 0.944 | 3.841
50 0.628 0.377 | 0.963 | 0.685 0.655 0.847 | 0.942 | 2.405

100 0.592 0.361 | 0.964 | 0.472 0.652 0.841 | 0.945 | 1.876
200 0.585 0.354 | 0.965 | 0.451 0.642 0.838 | 0.947 | 1.579

400 0.575 0335 | 0974 | 0.365 0.571 0.797 | 0.963 | 0.367
p 25 2.449 2.198 | 0963 | 1.238 0.587 0.693 | 0.963 | 5.050
50 2.383 2.119 | 0.956 | 0.423 0.575 0.681 | 0.964 | 1.569

100 1.926 2.176 | 0.957 | 0.329 0.556 0.621 | 0.968 | 0.847
200 1.911 2177 | 0.962 | 0.246 0.545 0.611 | 0.969 | 0.545

400 1.848 1.986 | 0.964 | 0.203 0.442 0.495 | 0970 | 0.254
a 25 0.663 0.744 | 0943 | 2.179 0.626 0.953 | 0.922 | 1.882
50 0.511 0.656 | 0.940 | 1.519 0.522 0.693 | 0.939 | 1.474
100 0.448 0.499 | 0931 | 1.147 0.435 0.595 | 0.926 | 0.839
200 0.441 0.466 | 0.936 | 0.887 0.431 0.379 | 0.928 | 0.712
400 0.427 0.441 | 0946 | 0.339 0.349 0.343 | 0.949 | 0.419

6. Concluding Remarks

"In this paper, we have proposed a new family of distributions called odd
log-logistic power inverse Lindley distribution. We get the probability
density functions for odd log-logistic inverse Lindley and power inverse
Lindley distributions as special cases from OLL-PIL. Some mathematical
properties along with estimation issues are addressed. The hazard rate
function behavior of the odd-logistic power inverse Lindley distribution
shows that the subject distribution can be used to model reliability data.
The estimation of parameters is approached by the method of maximum
likelihood. We present a simulation study to exhibit the performance and
accuracy of maximum likelihood estimates of the OLL-PIL model
parameters. Real data application was also presented to illustrate the
usefulness and applicability of the OLL-PIL distribution."
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Appendix

In this section, we report some needed derivatives in Section 3.
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