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The odd log- logistic Power Inverse Lindley 

distribution: Model, Properties and Applications 

Dr. Mahmoud Eltehiwy and Dr. Mohamed Hamouda 

Abstract 

In this article, we introduce a new three-parameter odd log-logistic power 

inverse Lindley distribution and discuss some of its properties. These 

include the shapes of the density and hazard rate functions, mixture 

representation, the moments, the quantile function, and order statistics. 

Maximum likelihood estimation of the parameters and their estimated 

asymptotic standard errors are derived. Three algorithms are proposed for 

generating random data from the proposed distribution. A simulation study 

is carried out to examine the bias and root mean square error of the 

maximum likelihood estimators of the parameters. An application of the 

model to three real data sets is presented finally and compared with the fit 

attained by some other well-known two and three-parameter distributions 

for illustrative purposes. It is observed that the proposed model has some 

advantages in analyzing lifetime data as compared to other popular models 

in the sense that it exhibits varying shapes and shows more flexibility than 

many currently available distributions. 

 

Keywords: Lambert function, maximum likelihood estimation, order 

statistics, power inverse Lindley distribution, Stochastic ordering. 
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1. Introduction 

"Survival and reliability analysis is a very important branch of 

statistics. It has many applications in many applied sciences, such as 

engineering, public health, actuarial science, biomedical studies, 

demography, and industrial reliability. The failure behavior of any system 

can be considered as a random variable due to the variations from one 

system to another resulting from the nature of the system. Therefore, it 

seems logical to find a statistical model for the failure of the system. In 

other applications, survival data are categorized by their hazard rate, e.g., 

the number of deaths per unit in a period of time. The modeling of survival 

data depends on the behavior of the hazard rate. The hazard rate may 

belong to the monotone (non-increasing and non-decreasing hazard rate) 

or non-monotone (bathtub and upside-down bathtub [UBT] or unimodal 

hazard rate). Several lifetime models have been suggested in statistics 

literature to model survival data. The Weibull distribution is one of the 

most popular and widely used models in life testing and reliability theory. 

Lindley (1958) suggested a one-parameter distribution as an alternative 

model for survival data. This model is known as Lindley distribution. 

However, the Weibull and Lindley distributions are restricted when data 

shows non-monotone hazard rate shapes, such as the unimodal hazard rate 

function (Almalki and Nadarajah 2014; Almalki and Yuan 2013)." 

"There are several real applications where the data show the non-

monotone shape for their hazard rate. For example, Langlands et al. (1997) 

studied the data of 3878 cases of breast carcinoma seen in Edinburgh from 

1954 to 1964 and noticed that mortality was initially low in the first year, 

reaching a peak in the subsequent years, and then declining slowly. 

Another real problem was analyzed by Efron (1988) who, using head and 

neck cancer data, found the hazard rate initially increased, reached a 

maximum, and decreased before it finally stabilized due to therapy. The 

inverse versions of some existing probability distributions, such as inverse 

Weibull, inverse Gaussian, inverse gamma, and inverse Lindley, show 

non-monotone shapes for their hazard rates; hence, we were able to model 
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a non-monotone shape data. Erto and Rapone (1984) showed that the 

inverse Weibull distribution is a good fit for survival data, such as the time 

to breakdown of an insulating fluid subjected to the action of constant 

tension. The use of Inverse Weibull was comprehensively described by 

Murthy et al. (2004). Glen (2011) proposed the inverse gamma distribution 

as a lifetime model in the context of reliability and survival studies. 

Recently, a new upside-down bathtub-shaped hazard rate model for 

survival data analysis was proposed by Sharma et al. (2014) by using 

transmuted Rayleigh distribution. Sharma et al. (2015) introduced the 

inverse Lindley distribution as a one-parameter model for a stress-strength 

reliability model. Sharma et al. (2016) generalized the inverse Lindley into 

a two-parameter model called “the generalized inverse Lindley 

distribution.” Finally, a new reliability model of inverse gamma 

distribution referred to as “the generalized inverse gamma distribution” 

was proposed by Mead (2015), which includes the inverse exponential, 

inverse Rayleigh, inverse Weibull, inverse gamma, inverse Chi square, and 

other inverse distributions."  

"Lindley (1958) proposed the Lindley distribution in the context of 

the Bayes theorem as a counter example of fiducial statistics with the 

probability density function (pdf) 

               𝑓(𝑦; 𝛽) =
𝛽2

1+𝛽
(1 + 𝑦)𝑒−𝛽𝑦;  𝑦, 𝛽 > 0.                                   (1) 

Ghitany et al. (2008) discussed the Lindley distribution and its 

applications extensively and showed that the Lindley distribution is a 

better fit than the exponential distribution based on the waiting time at the 

bank for service. The Lindley distribution has been extended by different 

researchers including Zakerzadeh and Dolati (2009), Nadarajah et al. 

(2011), Shanker and Mishra (2013), Ghitany et al. (2013), Ashour and 

Eltehiwy (2015), Eltehiwy (2019), Alizadeh et al. (2017). The inverse 

Lindley distribution was proposed by Sharma et al. (2015) using the 

transformation 𝑋 =
1

𝑌
 with the pdf 
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    𝑓(𝑥; 𝛽) =
𝛽2

1+𝛽
(

1+𝑥

𝑥3 ) 𝑒−
𝛽

𝑥 ;                                  𝛽, 𝑥 > 0,    (2)     

where Y is a random variable having pdf (1)." 

"Another two parameters inverse Lindley distribution introduced by 

Sharma et al. (2016), called “the generalized inverse Lindley distribution,” 

is a new statistical inverse model for upside-down bathtub survival data 

that uses the transformation  𝑋 = 𝑌−
1

𝛼 with the pdf 

          𝑓(𝑥; 𝛽, 𝛼) =
𝛼𝛽2

1+𝛽
(

1+𝑥𝛼

𝑥2𝛼+1
) 𝑒−

𝛽

𝑥𝛼;                         𝛽, 𝛼, 𝑥 > 0,      (3) 

ith 𝑌 being a random variable having pdf (1). Note that Barco et al. (2017) 

also obtained the generalized inverse Lindley distribution by taking the 

transformation 𝑋 = 𝑌−
1

𝛼  where 𝑌  follows inverse Lindley distribution 

known as power inverse Lindley distribution (PIL) with the same pdf." 

 

"The pdf (3) can be shown as a mixture of two distributions as follows: 

𝑓(𝑥; 𝛽, 𝛼) = 𝑝𝑓1(𝑥) + (1 − 𝑝)𝑓2(𝑥), 

  where,  

      𝑝 =
𝛽

𝛽+1
,       𝑓1 =

𝛼𝛽

𝑥𝛼+1 𝑒−
𝛽

𝑥𝛼,  𝑥 > 0   and  𝑓2 =
𝛼𝛽2

𝑥2𝛼+1 𝑒−
𝛽

𝑥𝛼,   𝑥 > 0. 

We see that, PIL is a two-component mixture of inverse Weibull 

distribution (shape 𝛼  and scale 𝛽 ) and generalized inverse gamma 

distribution (with shape parameters 2, 𝛼  and scale 𝛽 ), with mixing 

proportion 𝑝 = 𝛽 (𝛽 + 1)⁄ ." 

Gleaton and Lynch (2004, 2006) introduced a new family of 

distributions which is called the Generalized log-logistic family of 

distributions. The cumulative distribution function (cdf) of this family is 

given by  

𝐹𝐹(𝑥; 𝜃, 𝜉) =
𝐺(𝑥;𝜉)𝜃

𝐺(𝑥;𝜉)𝜃+𝐺(𝑥;𝜉)𝜃,            (4) 
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where 𝜃 > 0 is the shape parameter, 𝐺(𝑥; 𝜉) is the cdf of the baseline 

distribution, 𝐺(𝑥; 𝜉) = 1 − 𝐺(𝑥; 𝜉) is the survival function and 𝜉 is the set 

of the parameters of the baseline distribution 𝐺(. ). In addition, the pdf of 

the family is  

𝑓(𝑥; 𝜃, 𝜉) =
𝜃g(𝑥;𝜉)𝐺(𝑥;𝜉)𝜃−1𝐺(𝑥;𝜉)𝜃−1

[𝐺(𝑥;𝜉)𝜃+𝐺(𝑥;𝜉)𝜃]
2 . 

This family was called later the odd log-logistic family of distributions. If 

the baseline distribution possesses a closed form cdf, the generated new 

distribution will also possess a closed form cdf. One can easily show that 

 

log[
𝐹(𝑥;𝜃,𝜉)

𝐹(𝑥;𝜃,𝜉)
]

log[
𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]

= 𝜃. 

Therefore  𝜃 is the quotient of the log-odds ratio for the generated and 

baseline distributions." 

    "Now, by letting 𝐺(𝑥; 𝜉)  in (4) to be the cdf of the power inverse 

Lindley distribution, where 𝜉 = (𝛽, 𝛼) is the set of parameters, we can 

obtain a new extension of the power inverse Lindley distribution, called 

the odd log-logistic power inverse Lindley (henceforth, OLL-PIL) 

distribution. The cdf, pdf and hazard rate function of this distribution are 

given by" 

𝐹(𝑥; 𝛼, 𝛽, 𝜃) =
(1+

𝛽

(1+𝛽)𝑥𝛼)
𝜃

𝑒
−

𝜃𝛽
𝑥𝛼

(1+
𝛽

(1+𝛽)𝑥𝛼)
𝜃

𝑒
−

𝜃𝛽
𝑥𝛼+[1−(1+

𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝜃,          (5) 

for 𝑥 > 0, 𝜃, 𝛽, 𝛼 > 0 and  the corresponding pdf is given by 

𝑓(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝜃𝛽2(

1+𝑥𝛼

𝑥2𝛼+1)𝑒
−

𝛽𝜃
𝑥𝛼[(1+

𝛽

(1+𝛽)𝑥𝛼)]
𝜃−1

[1−(1+
𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝜃−1

(1+𝛽){(1+
𝛽

(1+𝛽)𝑥𝛼)
𝜃

𝑒
−

𝜃𝛽
𝑥𝛼 +[1−(1+

𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝜃

}

2 ,    (6)                 
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ℎ(𝑥; 𝛼, 𝛽, 𝜃) =

𝛼𝜃𝛽2(
1+𝑥𝛼

𝑥2𝛼+1)𝑒
−

𝛽𝜃
𝑥𝛼[(1+

𝛽

(1+𝛽)𝑥𝛼)]
𝜃−1

(1+𝛽)[1−(1+
𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]{(1+

𝛽

(1+𝛽)𝑥𝛼)
𝜃

𝑒
−

𝜃𝛽
𝑥𝛼+[1−(1+

𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝜃

}

 .           (7) 

"We write 𝑋~𝑂𝐿𝐿 − 𝑃𝐼𝐿(𝛼, 𝛽, 𝜃)if the pdf of X can be written as (6). The 

new distribution is very flexible in the sense that it can be skewed and 

symmetric depending upon the specific choices of the parameters. 

Furthermore, the associated cdf is in closed form. Consequently, this 

distribution can be applied to modeling censored data too. This is a major 

motivation to carry out this work. Furthermore, in reliability engineering 

and lifetime analysis, we often assume that the failure times of the 

components within each system follow the exponential lifetimes; see, for 

example, Adamidis and Loukas (1998) among others and the references 

therein. This assumption may seem unreasonable because, for the 

exponential distribution, the hazard rate is a constant, whereas many real-

life systems do not have constant hazard rates, and the components of a 

system are often more rigid than the system itself, such as bones in a 

human body, balls of a steel pipe, etc. Accordingly, it becomes reasonable 

to consider the components of a system to follow a distribution with a non-

constant hazard function that has flexible hazard function shapes." 

"An interpretation of the OLL-PIL distribution can be given as 

follows: Let 𝑋 be a lifetime random variable having power inverse Lindley 

distribution. The odds ratio that an individual (or component) following 

the lifetime 𝑋 will die (fail) at time 𝑥 is 𝑦 = 𝐺(𝑥; 𝛼, 𝛽)/𝐺(𝑥; 𝛼, 𝛽). Here, 

one can consider this odds of death as a random variable, say 𝑌. Now, if 

we model the randomness of the “odds of death” using the log-logistic 

distribution with scale parameter 1 and shape parameter 𝜃 , (𝐹𝑌(𝑦) =

𝑦𝜃/[1 + 𝑦𝜃]) for 𝑦 > 0. Then we can write 

𝑃𝑟(𝑌 ≤ 𝑦) = 𝐹𝑌(𝐺(𝑥; 𝛼, 𝛽)/𝐺(𝑥; 𝛼, 𝛽)), 
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which is given by (5), see Cooray (2006) for more details regarding this 

interpretation. 

Plots of the pdf are shown in Fig. 1. The pdfs appear always unimodal. 

The mode moves more to the right and the pdf becomes less peaked with 

increasing values of β. The mode moves more to the right and the pdf 

becomes less peaked with increasing values of θ. The pdf becomes more 

peaked with increasing values of. The behavior of  ℎ(𝑥) in (7) of the OLL-

PIL for different values of the parameters  𝛼, 𝛽  and 𝜃 are showed 

graphically in Fig. 2." 
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Figure 2. Hazard rate functions of the OLL-PIL model for selected  𝜃, 𝛽 and 𝛼. 

"Because the hazard rate function of extended inverse Lindley 

distribution is always unimodel function in x, the new distribution is also 

a unimodal. Figure 2 illustrates the behavior of the hazard rate function of 

the OLL-PIL distribution at different values of the parameters involved. 

Concerning the hazard rate function of the odd log logistic power inverse 

Lindley distribution, which is shown in Fig. 2, it notably has the shape of 

an upside-down bathtub, therefore being unimodal in x. 

This attractive flexibility makes the OLL-PIL hazard rate function 

useful and suitable for non-monotone empirical hazard behaviors which 

are more likely to be encountered or observed in real life situations."  
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"We hope that this new distribution can be applied to describing 

lifetime data more properly than the existing distributions. The major 

motivation of introducing the OLL-PIL distribution can be summarized as 

follows. (i) The OLL-PIL distribution contains several lifetime 

distributions as special cases, such as the power inverse Lindley (PIL) 

distribution due to Barco et al. (2017) for 𝜃 = 1: (ii) It is shown in Section 

2 that the OLL-PIL distribution can be viewed as a mixture of 

exponentiated power inverse Lindley (EPIL) distributions introduced by 

Jan et al. (2018). (iii) The OLL-PIL distribution is a flexible model, which 

can be widely used for modeling lifetime data. (iv) The OLL-PIL 

distribution exhibits non-monotone hazard rates but does not exhibit a 

constant hazard rate, which makes this distribution to be superior to other 

lifetime distributions. (v) The OLL-PIL distribution outperforms several 

of the well-known lifetime distributions with respect to some real data 

examples." 

Special cases: 

• For 𝜃 = 1, we obtain the power inverse Lindley distribution. 

• For 𝛼 = 1 , we obtain the odd log-logistic inverse Lindley 

distribution. 

• For 𝜃 = 𝛼 = 1, we obtain the inverse Lindley distribution. 

"The rest of the article is organized as follows: In Section 2, we 

discuss some structural properties of the OLL-PIL distribution. Section 3 

deals with the classical method of estimation (using maximum likelihood) 

of the model parameters of the OLL-PIL distribution. In Section 4, three 

real data sets are considered as an example to illustrate the applicability of 

OLL-PIL distribution. In Section 5, a simulation study is conducted to 

verify the efficacy of the said estimation procedure. In Section 6, we 

provide some concluding remarks." 
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2. Structural properties 

In this section, we discuss some structural properties of the OLL-PIL 

distribution. 

2.1 Mixture representations for the pdf and cdf 

The EPIL distribution, introduced by Jan et al. (2018) has the pdf 

𝑓𝐸𝑃𝐼𝐿(𝑥; 𝛼, 𝛽, 𝜃) =
𝛼𝜃𝛽2

𝛽+1
(

1+𝑥𝛼

𝑥2𝛼+1) 𝑒−
𝛽𝜃

𝑥𝛼 [(1 +
𝛽

(1+𝛽)𝑥𝛼)]
𝜃−1

, 𝑥, 𝜃, 𝛽, 𝛼 > 0    (8) 

 

We write 𝐸𝑃𝐼𝐿(𝛼, 𝛽, 𝜃) if the pdf of 𝑋 can be expressed as (8). In addition, 

the cdf of the EPIL model is  

 𝐹𝐸𝑃𝐼𝐿(𝑥; 𝛼, 𝛽, 𝜃) = [(1 +
𝛽

(1+𝛽)𝑥𝛼) 𝑒−
𝛽

𝑥𝛼]
𝜃

, 𝑥 > 0, 𝜃, 𝛽, 𝛼 > 0           (9)               

Now, we show that the OLL-PIL distribution can be viewed as a mixture 

of EPIL distributions. Using the generalized binomial expansion, the 

numerator of (5) can be  

[(1 +
𝛽

(1+𝛽)𝑥𝛼)]
𝜃

𝑒−
𝛽𝜃

𝑥𝛼 = ∑ 𝑎𝑘
∞
𝑘=0 [(1 +

𝛽

(1+𝛽)𝑥𝛼) 𝑒−
𝛽

𝑥𝛼]
𝑘

, 

where 𝑎𝑘 = ∑ −1𝑘(𝜃
𝑘

)(𝑗
𝑘

)∞
𝑗=𝑘  and the denominator of (5) can be written as 

(1 +
𝛽

(1+𝛽)𝑥𝛼)
𝜃

𝑒−
𝜃𝛽

𝑥𝛼 + [1 − (1 +
𝛽

(1+𝛽)𝑥𝛼) 𝑒−
𝛽

𝑥𝛼]
𝜃

  

                                                   = ∑ 𝑏𝑘
∞
𝑘=0 [(1 +

𝛽

(1+𝛽)𝑥𝛼
) 𝑒−

𝛽

𝑥𝛼]
𝑘

,  

where 𝑏𝑘 = 𝑎𝑘 + −1𝑘(𝜃
𝑘

). Therefore, the cdf of the OLL-PIL distribution 

can be expressed as 

𝐹(𝑥) =
∑ 𝑎𝑘

∞
𝑘=0 [(1+

𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝑘

∑ 𝑏𝑘
∞
𝑘=0 [(1+

𝛽

(1+𝛽)𝑥𝛼)𝑒
−

𝛽
𝑥𝛼]

𝑘 = ∑ 𝑐𝑘 [(1 +
𝛽

(1+𝛽)𝑥𝛼
) 𝑒−

𝛽

𝑥𝛼]
𝑘

∞
𝑘=0  , 
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where 𝑐0 =
𝑎0

𝑏0
= 0 and for 𝑘 ≥ 1 we have 

                                                 𝑐𝑘 = 𝑏0
−1[𝑎𝑘 − 𝑏0

−1 ∑ 𝑏𝑟𝑐𝑘−𝑟
𝑘
𝑟=1 ]. 

Or equivalently, we can write the cdf of OLL-PIL as 

𝐹(𝑥) = ∑ 𝑐𝑘𝐹𝐸𝑃𝐼𝐿(𝑥; 𝑘, 𝛼, 𝛽)∞
𝑘=1 = ∑ 𝑐𝑘+1𝐹𝐸𝑃𝐼𝐿(𝑥; 𝑘 + 1, 𝛼, 𝛽)∞

𝑘=0 ,(10)  

 where 𝐹𝐸𝑃𝐼𝐿(𝑥; 𝑘 + 1, 𝛼, 𝛽) denotes the cdf of the EPIL distribution with 

parameters 𝑘 + 1, 𝛼 and 𝛽. We note that ∑ 𝑐𝑘+1 = 1∞
𝑘=0 . 

By differentiating equation (10), the pdf of the OLL-PIL distribution can 

be expanded as 

      𝑓(𝑥) = ∑ 𝑐𝑘+1𝑓𝐸𝑃𝐼𝐿(𝑥; 𝑘 + 1, 𝛼, 𝛽)∞
𝑘=0 ,                                           (11) 

 

 where 𝑓𝐸𝑃𝐼𝐿(𝑥; 𝑘 + 1, 𝛼, 𝛽) denotes the pdf of the EPIL distribution with 

parameters 𝑘 + 1, 𝛼 and 𝛽. 

2.2 Moments 

The 𝑟𝑡ℎ ordinary moment of 𝑋 is given by 

 𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞
. Then, using Eq.(11), we obtain 

𝜇𝑟
′ = (𝛽)

𝑟

𝛼 ∑ ∑ (𝑘
𝑖
)𝑐𝑘+1(𝑘 + 1)

𝑟

𝛼∞
𝑖=0

∞
𝑘=0

[𝑖+1−
𝑟

𝛼
+(𝑘+1)𝛽]Γ(𝑖+1−

𝑟

𝛼
)

[(𝑘+1)(𝛽+1)]𝑖+1   

For 𝑟𝑡ℎ moment to exist, the constraint 𝛼 > 𝑟 must be satisfied. 

The moment generating function 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥)  of 𝑋  can be derived 

from Eq. (11) as follows: 

𝑀𝑋(𝑡) = ∑ ∑ ∑
𝑡𝑛

𝑛!
[𝛽(𝑘 + 1)]

𝑛

𝛼(𝑘
𝑖
)𝑐𝑘+1

[𝑖+1−
𝑛

𝛼
+(𝑘+1)𝛽]Γ(𝑖+1−

𝑛

𝛼
)

[(𝑘+1)(𝛽+1)]𝑖+1
∞
𝑛=0

∞
𝑖=0

∞
𝑘=0   
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2.3 Incomplete moments 

"The main applications of the first incomplete moment refer to the 

mean deviations and the Bonferroni and Lorenz curves. These curves are 

very useful in economics, reliability, demography, insurance, and 

medicine. The  𝑠𝑡ℎ  incomplete moment, say say 𝜂𝑠(𝑡), of the OLL-PIL 

distribution is given by 

𝜂𝑠(𝑡) = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
𝑡

0
, 

𝜂𝑠(𝑡) =  

       (𝛽)
𝑠

𝛼 ∑ ∑ (𝑘
𝑖
)𝑐𝑘+1(𝑘 + 1)

𝑠

𝛼∞
𝑖=0

∞
𝑘=0

[𝑖+1−
𝑠

𝛼
+(𝑘+1)𝛽]𝛾(𝑖+1−

𝑠

𝛼
,
(𝑘+1)(𝛽+1)

𝑡𝛼 )

[(𝑘+1)(𝛽+1)]𝑖+1 , (12)             

where 𝛾(. , . )  is the lower incomplete moments. “The first incomplete 

moment of the OLL-PIL distribution can be obtained by setting  𝑠 = 1 in 

(12). The first incomplete moment is related to the Bonferroni and Lorenz 

curves, the mean residual, and mean waiting times. The Bonferroni and 

Lorenz curves are important in economics, reliability, demography, 

insurance, and medicine. The Lorenz curves, say 𝐿𝑂(𝑥), and Bonferroni 

curve, say 𝐵𝑂(𝑥), are defined by" 

 

𝐿𝑂(𝑥) =
𝜂1(𝑡)

𝐸(𝑋)
, 

and 

𝐵𝑂(𝑥) =
𝐿𝑂(𝑥)

𝐹𝑂𝐿𝐿−𝑃𝐼𝐿(𝑥;𝜃,𝛽,𝛼)
. 

2.4. Stochastic Orders 

"Stochastic ordering of positive continuous random  variables is an 

important tool for judging the comparative behavior. Suppose 𝑋𝑖  is 

distributed according to (Eqs. 5 and 6) with common parameter 𝛽  and 

parameters 𝜃𝑖  and 𝛼𝑖 for 𝑖 = 1,2 . Let 𝐹𝑖  denote the cumulative 

distribution of 𝑋𝑖 and let 𝑓𝑖 denote the probability density function of 𝑋𝑖." 
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A random variable 𝑋1 is said to be smaller than a random variable 𝑋2 in 

the  

I. Stochastic order (𝑋1 ≤𝑠𝑡 𝑋2) if 𝐹1(𝑥) ≥ 𝐹2(𝑥) for all 𝑥. 

II. Hazard rate order (𝑋1 ≤ℎ𝑟 𝑋2)if ℎ1(𝑥) ≥ ℎ2(𝑥) for all 𝑥. 

III. Likelihood ratio order (𝑋1 ≤𝐿𝑟 𝑋2) if 
𝑓1(𝑥)

𝑓2(𝑥)
 decreases in 𝑥. 

"The following results due to Shaked and Shanthikumar (1994) are well 

known for establishing stochastic ordering of distributions" 

𝑋1 ≤𝐿𝑟 𝑋2 ⇒ 𝑋1 ≤ℎ𝑟 𝑋2 ⇒ 𝑋1 ≤𝑠𝑡 𝑋2 

The OLL-PILD is ordered with respect to the strongest “likelihood ratio” 

ordering as shown in the following theorem: 

Theorem 2.1. Let 𝑋1~𝑂𝐿𝐿𝑃𝐼𝐿𝐷(𝜃1, 𝛽1, 𝛼1) and 𝑋2~𝑂𝐿𝐿 −
𝑃𝐼𝐿𝐷(𝜃2, 𝛽2, 𝛼2) . If 𝛽1 = 𝛽2 ,  and𝜃2 ≥ 𝜃1  (or if 𝛽2 ≥ 𝛽1 and 𝜃1 = 𝜃2 ), 

then 𝑋1 ≤𝐿𝑟 𝑋2 and hence 𝑋1 ≤ℎ𝑟 𝑋2 and 𝑋1 ≤𝑠𝑡 𝑋2. 

Proof. Straight forward and hence omitted. 

Setting 𝛼1 = 𝛼2  

Case 1:  𝛽1 = 𝛽2  and 𝜃2 ≥ 𝜃1  we obtained 
𝑑

𝑑𝑥
(

𝑓2(𝑥)

𝑓1(𝑥)
)  as an increasing 

function of 𝑥.  

Case 2: 𝛽1 ≥ 𝛽2  and 𝜃2 = 𝜃1  we obtained 
𝑑

𝑑𝑥
(

𝑓2(𝑥)

𝑓1(𝑥)
)  as an increasing 

function of 𝑥.  

This implies 𝑋1 ≤𝐿𝑟 𝑋2 and hence 𝑋1 ≤ℎ𝑟 𝑋2 and 𝑋1 ≤𝑠𝑡 𝑋2." 

2.5. Quantile Function 

"Let X denotes a random variable with the probability density function 

(Eq. 6). The quantile function, say 𝑄(𝑝), defined by 𝐹(𝑄(𝑝)) = 𝑝 is the 

root of the equation 

         (1 +
𝛽

(1+𝛽)𝑄(𝑝)𝛼) 𝑒
−

𝛽

𝑄(𝑝)𝛼 =
−(1+𝛽)𝑝

1
𝜃⁄

𝑝
1

𝜃⁄ +(1−𝑝)
1

𝜃⁄
,              (13)               
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    for 0 < 𝑝 < 1. Multiplying (13) both sides by 𝑒−1−𝛽 we get, 

      − (1 + 𝛽 +
𝛽

𝑄(𝑝)𝛼) 𝑒
−(1+𝛽+

𝛽

𝑄(𝑝)𝛼)
=

−(1+𝛽)𝑝
1

𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ +(1−𝑝)
1

𝜃⁄
 

Using the Lambert W function which is the solution of the equation 

𝑊(𝑧)𝑒𝑊(𝑧), where 𝑧 is a complex number, we have" 

𝑊 (
−(1 + 𝛽)𝑝

1
𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ + (1 − 𝑝)
1

𝜃⁄
) = − (1 + 𝛽 +

𝛽

𝑄(𝑝)𝛼
) 

The negative Lambert W function of the real argument 
−(1+𝛽)𝑝

1
𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ +(1−𝑝)
1

𝜃⁄
 is 

𝑊−1 (
−(1 + 𝛽)𝑝

1
𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ + (1 − 𝑝)
1

𝜃⁄
) = − (1 + 𝛽 +

𝛽

𝑄(𝑝)𝛼
) 

Which upon solving for 𝑄(𝑝) results in  

                           𝑄(𝑝) = [−1 −
1

𝛽
−

1

𝛽
𝑊−1 (

−(1+𝛽)𝑝
1

𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ +(1−𝑝)
1

𝜃⁄
)]

−
1

𝛼

.  

Using above equation, the quartiles of the OLL-PIL distribution can be 

determined.  

2.6. Asymptotic properties 

Let 𝑋~OLL-PIL then the asymptotic of equation (5), 6) and (7) as 𝑥 → 0 

are given by 

𝐹(𝑥)~ (
𝛽

𝑥𝛼)
𝜃

     as  𝑥 → 0 

𝑓(𝑥)~
𝛼𝜃𝛽𝜃

𝑥𝛼𝜃+1     as  𝑥 → 0 

ℎ(𝑥)~
𝛼𝜃𝛽𝜃

𝑥𝛼𝜃+1 as  𝑥 → 0 

The asymptotic of equation (5), 6) and (7) as 𝑥 → ∞ are given by 
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1 − 𝐹(𝑥)~ (
𝛽

1+𝛽
)

𝜃 𝑒
−

𝜃𝛽
𝑥𝛼

𝑥𝜃𝛼
     as  𝑥 → ∞ 

𝑓(𝑥)~𝜃𝛽𝛼 (
𝛽

1+𝛽
)

𝜃 𝑒
−

𝜃𝛽
𝑥𝛼

𝑥𝛼(𝜃+1)+1     as  𝑥 → ∞ 

ℎ(𝑥)~
𝜃𝛽𝛼

𝑥𝛼+1
 as  𝑥 → ∞ 

"This attractive flexibility makes the OLL-PIL hazard rate function useful 

and suitable for non-monotone empirical hazard behaviors which are more 

likely to be encountered or observed in real life situations." 

2.7. Distribution of order statistics 

"Order statistics make their appearance in many areas of 

statistical theory and practice. Suppose that 𝑋1, … , 𝑋𝑛 are a random 

sample from an OLL-PIL distribution. Let 𝑋𝑖:𝑛 denote the i-th order 

statistic. The pdf of 𝑋𝑖:𝑛 can be expressed as (see Arnold et al., 1992)." 

           𝑓𝑖:𝑛(𝑥) = 𝐾𝑓(𝑥)𝐹𝑖−1(𝑥){1 − 𝐹(𝑥)}𝑛−𝑖 

         = 𝐾 ∑ (−1)𝑗 (
𝑛 − 𝑗

𝑗
) 𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1𝑛−𝑖

𝑗=0  ,      (14) 

 where 𝐾 =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
. 

 

We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power 

series raised to a positive integer 𝑛 (𝑛 ≥ 1) 

(∑ 𝑎𝑖𝑢
𝑖∞

𝑖=0 )
𝑛

= ∑ 𝑑𝑛,𝑖𝑢
𝑖∞

𝑖=0 , 

where the coefficients 𝑑𝑛,𝑖  (for 𝑖 = 1,2, … ) are determined from the 

recurrence equation (with 𝑑𝑛,0 = 𝑎0
𝑛) 

𝑑𝑛,𝑖 = (𝑖𝑎0)−1 ∑ [𝑚(𝑛 + 1) − 𝑖]𝑎𝑚𝑑𝑛,𝑖−𝑚
𝑖
𝑚=1 . 

We can demonstrate that the density function of the i-th order statistics of 

an OLL-PIL distribution can be expressed as 

 

 𝑓𝑖:𝑛 = ∑ ∑ 𝑚𝑟,𝑘,𝑗
∗ 𝑓𝐸𝑃𝐼𝐿(𝑥, 𝑟 + 𝑘 + 𝑖 + 𝑗, 𝛼, 𝛽)∞

𝑗=0
∞
𝑟,𝑘=0 ,                        (14)                                
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where 𝑓𝐸𝑃𝐼𝐿(𝑥; 𝛼, 𝛽, 𝜃)  denotes the density of EPIL distribution with 

parameters 𝛼, 𝛽 and 𝜃 and the coefficient 𝑚𝑟,𝑘,𝑗
∗ ≡ 𝑚𝑟,𝑘,𝑗

∗ (𝑖, 𝑛)′𝑠 are given 

by  

𝑚𝑟,𝑘,𝑗
∗ =

𝑛!(𝑟+1)𝑐𝑟+1(−1)𝑗𝑎𝑗+𝑖−1.𝑘
∗

(𝑖−1)!(𝑛−𝑖−𝑗)!𝑗!(𝑟+𝑘+𝑖+𝑗)
, 

In which the coefficients 𝑐𝑟′𝑠 are defined in subsection 2.1 and quantities 

𝑎𝑗+𝑖−1,𝑘
∗  can be determined such that 𝑎𝑗+𝑖−1,0

∗ = 𝑐1
𝑗+𝑖−1

 and for 𝑘 ≥ 1 

                          𝑎𝑗+𝑖−1.𝑘
∗ = (𝑘𝑐1)−1 ∑ [𝑞(𝑗 + 𝑖) − 𝑘]𝑐𝑞+1

𝑘
𝑞=1 𝑎𝑗+𝑖−1,𝑘−𝑞

∗ . 

"Equation (14) is the main result of this section. It reveals that the pdf of 

the OLL-PIL order statistic is a linear combination of EPIL distributions. 

Therefore, several mathematical quantities of these order statistics like 

ordinary and incomplete moments, factorial moments, and moment 

generating function, mean deviations and others can be derived using this 

result." 

3. Maximum Likelihood Estimation of Parameters 

Let 𝑋1, … , 𝑋𝑛 be a random sample of size n from OLL-PIL. Then, the 

log-likelihood function is given by  

ℒ(𝛼, 𝛽, 𝛾, 𝜃) = ∑ ln 𝑓(𝑥𝑖)
𝑛
𝑖=1 , 

 = 𝑛[ln(𝛼) + 2 ln(𝛽) + ln(𝜃) − ln(1 + 𝛽)] + ∑ ln(1 + 𝑥𝑖
𝛼)𝑛

𝑖=1  

−(2𝛼 + 1) ∑ ln(𝑥𝑖)
𝑛
𝑖=1  −𝛽 ∑ 𝑥𝑖

−𝛼 + (𝜃 − 1) ∑ ln[𝑡𝑖(1 − 𝑡𝑖)]𝑛
𝑖=1

𝑛
𝑖=1  

−2 ∑ ln[𝑡𝑖
𝜃 + (1 − 𝑡𝑖)

𝜃]𝑛
𝑖=1    ,                                                  (15) 

  where   𝑡𝑖 = (1 +
𝛽

(1+𝛽)𝑥𝛼
) 𝑒−

𝛽

𝑥𝛼.                                                                                                            
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The MLEs �̂�, �̂�, 𝜃 of 𝛼, 𝛽, 𝜃 are then the solutions of the following non-

linear equations: 

𝜕

𝜕𝛼
ℒ(𝛼, 𝛽, 𝛾, 𝜃) =

𝑛

𝛼
+ ∑

𝑥𝑖
𝛼 ln(𝑥𝑖)

𝑥𝑖
𝛼 + 1

𝑛

𝑖=1

− 2 ∑ ln(𝑥𝑖)

𝑛

𝑖=1

+ 𝛽 ∑ 𝑥𝑖
−𝛼

𝑛

𝑖=1

. ln(𝑥𝑖) 

   +(𝜃 − 1) ∑
𝑡𝑖

(𝛼)

𝑡𝑖

𝑛
𝑖=1 + (1 − 𝜃) ∑

𝑡𝑖
(𝛼)

1−𝑡𝑖

𝑛
𝑖=1  

                                                    −2𝜃 ∑ 𝑡𝑖
(𝛼) 𝑡𝑖

𝜃−1−(1−𝑡𝑖)𝜃−1

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

𝑛
𝑖=1 = 0,      (16) 

𝜕

𝜕𝛽
ℒ(𝛼, 𝛽, 𝛾, 𝜃) =

𝑛(𝛽+2)

𝛽(𝛽+1)
− ∑ 𝑥𝑖

−𝛼 + (𝜃 − 1) ∑
𝑡𝑖

(𝛽)

𝑡𝑖
+𝑛

𝑖=1
𝑛
𝑖=1   

                  (1 − 𝜃) ∑
𝑡𝑖

(𝛽)

1−𝑡𝑖

𝑛
𝑖=1 − 2𝜃 ∑ 𝑡𝑖

(𝛽) 𝑡𝑖
𝜃−1−(1−𝑡𝑖)𝜃−1

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

𝑛
𝑖=1 = 0            (17) 

𝜕

𝜕𝜃
ℒ(𝛼, 𝛽, 𝛾, 𝜃) = 

            
𝑛

𝜃
+ ∑ ln[𝑡𝑖(1 − 𝑡𝑖)] − 2 ∑

𝑡𝑖
𝜃 ln(𝑡𝑖)+(1−𝑡𝑖)𝜃 ln(1−𝑡𝑖)

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

𝑛
𝑖=1

𝑛
𝑖=1  = 0     (18)                             

 where 

                           𝑡𝑖
(𝛼)

=
𝛽2

1+𝛽
(

1+𝑥𝑖
𝛼

𝑥𝑖
2𝛼+1) 𝑒

−
𝛽

𝑥𝑖
𝛼

 ln(𝑥𝑖), 

                           𝑡𝑖
(𝛽)

=
𝑒

−
𝛽

𝑥𝑖
𝛼

𝑥𝑖
𝛼(1+𝛽)2 −

𝑒
−

𝛽

𝑥𝑖
𝛼

𝑥𝑖
𝛼 (

𝛽

𝑥𝑖
𝛼(1+𝛽)

+ 1)  

The above non-linear system of equations is solved by numerical iteration 

technique and maximum likelihood estimates are obtained.  

For the three parameters OLL-PIL distribution, all the second order 

derivatives exist. Thus, we have the inverse dispersion matrix is 
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(
𝜃
�̂�
�̂�

) ~𝑁 [(
𝜃
𝛽
𝛼

) , (

�̂�11 �̂�12 �̂�13

�̂�21 �̂�22 �̂�23

�̂�31 �̂�32 �̂�33

)] 

 

𝑉−1 = −𝐸 [(
𝑉11 … 𝑉13

… … …
𝑉31 … 𝑉33

)] = −𝐸 (

𝜕2ℒ

𝜕𝜃2 …
𝜕2ℒ

𝜕𝜃𝜕𝛾
… … …

𝜕2ℒ

𝜕𝜃𝜕𝛾
…

𝜕2ℒ

𝜕𝛾2

) ,                   (19)                        

Equation (19) is the variance covariance matrix of the                       OLL −

PIL (𝜃, 𝛽, 𝛼) 

𝑉11 =
𝜕2ℒ

𝜕𝜃2    𝑉12 =
𝜕2ℒ

𝜕𝜃𝜕𝛽
     𝑉13 =

𝜕2ℒ

𝜕𝜃𝜕𝛼
         𝑉22 =

𝜕2ℒ

𝜕𝛽2 ,  

𝑉23 =
𝜕2ℒ

𝜕𝛽𝜕𝛼
          𝑉33 =

𝜕2ℒ

𝜕𝛼2            

The second derivatives of ℒ   is in Appendix.  

By solving this inverse dispersion matrix, these solution will yield the 

asymptotic variance and co-variances of these ML estimators for 𝜃 , 

�̂� 𝑎𝑛𝑑 �̂� . By using (Eq.19), approximately 100(1 − 𝛼)%  confidence 

intervals for 𝜃, 𝛽, 𝛼 and 𝛾 can be determined as 

𝜃 ± 𝑍𝛼

2

√�̂�11               �̂� ± 𝑍𝛼

2

√�̂�22          �̂� ± 𝑍𝛼

2

√�̂�33 

where 𝑍𝛼

2
 is the upper 𝛼-th percentile of the standand normal distribution." 

4. Data Analysis 

" In this section, we demonstrate the applicability of the OLL-PIL 

model for a real data. The data listed in Table 1 represents the average 

wind speed in Denmark reported in Hibatullah et al. (2018).  
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The applicability of EEILD is demonstrated by using some 

statistical tools suchs as Kolmogrov-Smirnov statistic, Akaike information 

criterion (AIC) defined by −2 log 𝐿 + 2𝑞 , Bayesian information criterion 

(BIC) defined by−2 log 𝐿 + 𝑞 log(𝑛), where 𝑞 is the number of estimated 

parameters and 𝑛  is the sample size, and are compared with other 

distributions. AIC and BIC values estimates the quality of each model 

relative to each of the other models. The MLEs of the parameters are given 

in Table 3 and the statistical values mentioned above are computed and are 

given in Table 2. These values indicate that the proposed distribution fits 

well to the data compared to other tested distributions. The best model 

would be given by the highest value of log 𝐿 and the lowest values of the 

AIC and BIC. Thus, the OLL-PIL distribution is compared with the 

Lindley (L) distribution, the power Lindley (PL) distribution, the inverse 

Lindley (IL) distribution, the power inverse Lindley (PIL) distribution, the 

Weibull (W) distribution, and the Gamma (G) distribution." 

Table 1. The average wind speed in Denmark. 

1.04525 

2.78426 

2.54918 

6.90446 

2.46577 

2.83905 

2.09819 

0.47927 

1.41378 

4.77888 

2.28740 

4.79976 

1.32359 

1.71967 

3.52471 

0.38095 

10.9028 

1.38314 

1.89628 

1.03046 

2.44529 

13.1893 

2.16495 

3.78884 

2.20266 

0.71543 

16.4941 

3.14792 

7.72747 

2.84926 

2.68460 

5.45061 

1.32353 

1.48582 

5.10102 

3.00342 

1.77735 

4.88295 

0.80280 

5.02584 

1.50003 

2.01266 

1.74341 

3.11761 

0.80668 

2.65187 

4.64156 

1.65586 

6.95507 

5.83996 

3.33749 

1.27453 

2.29751 

3.26983 

2.65993 

4.53323 

5.73434 

2.09596 

1.52554 

2.71060 
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 Table 2:Comparison criterion 

Models log 𝐿 AIC BIC K-S 

statistic 

P-value 

Lindley  −129.586 261.172 263.266 0.0988 0.4087 

Inverse Lindley  −132.532 267.063 269.157 0.1146 0.2423 

Power Lindley  −129.022 262.044 266.233 0.0982 0.4156 

Power Inverse Lindley  −129.671 263.343 267.531 0.1113 0.2723 

Gamma (G) −129.639 257.278 261.467 0.1012 0.3795 

Weibull (W) −128.960 259.920 266.109 0.0955 0.4507 

OLL-PIL -123.611 253.222 259.506 0.0718 0.7582 

Table (3): Parameters MLES 

Models 𝛼 𝛽 𝜃 

Lindley (L) ---- 0.49297 ---- 

Inverse Lindley (IL) 1 2.50067 1 

Power Lindley (PL) 1.09454 0.43377 1 

Power Inverse Lindley 

(PIL) 

1.26995 2.68507 1 

Gamma (G) 1.95473 1.73284 --- 

Weibull (W) 1.33872 3.72481 ---- 

OLL-PIL 0.22158 1.31936 7.162 

The OLL-PIL takes the smallest K-S test statistic value and the largest 

value of its corresponding p-value. In addition, it takes the largest log 

likelihood. Therefore, OLL-PIL provides the best fit to this data.  

5. Generation Algorithms and Monte Carlo Simulation Study 

"In this section, the algorithms for generating random data from 

OLL-PIL distribution are given. A simulation study was also conducted to 

check the performance and accuracy of maximum likelihood estimates of 

the OLL-PIL model parameters." The Simulation study is performed using 

the statistical software Mathcad 14. 
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5.1 Generation algorithms 

"In this subsection, different algorithms that can be used to generate 

random data from OLL-PIL distribution are presented.   

Algorithm I. (mixture form of the inverse Lindley distribution) 

1. Generate 𝑈𝑖~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0,1), 𝑖 = 1, … , 𝑛; 

2. Generate 𝑉𝑖~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝛽), 𝑖 = 1, … , 𝑛; 

3. Generate 𝐺𝑖~𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝛽), 𝑖 = 1, … , 𝑛. 

4. if 
𝑈𝑖

1/𝜃

𝑈
𝑖
1/𝜃

+(1−𝑈𝑖)
1

𝜃⁄
≤

𝛽

1+𝛽
, then set 𝑋𝑖 = 𝑉𝑖

1/𝛼
, otherwise, set  𝑋𝑖 =

𝐺𝑖
1/𝛼

, 𝑖 = 1, … , 𝑛. 

Algorithm II. (mixture form of the Extended inverse Lindley 

distribution) 

1. Generate 𝑈𝑖~𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0,1), 𝑖 = 1, … , 𝑛; 

2. Generate 𝑌𝑖~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝛼, 𝛽), 𝑖 = 1, … , 𝑛; 

3. Generate 𝑆𝑖~𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2, 𝛼, 𝛽), 𝑖 = 1, … , 𝑛. 

4. if 
𝑈𝑖

1/𝜃

𝑈
𝑖
1/𝜃

+(1−𝑈𝑖)
1

𝜃⁄
≤

𝛽

1+𝛽
, then set 𝑋𝑖 = 𝑌𝑖 , otherwise, set  𝑋𝑖 = 𝑆𝑖, 𝑖 =

1, … , 𝑛. 

Algorithm III: (inverse CDF) 

1. Generate 𝑈𝑖~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1, … , 𝑛; 

2. Set  

𝑋𝑖 = [−1 −
1

𝛽
−

1

𝛽
𝑊−1 (

−(1+𝛽)𝑝
1

𝜃⁄ 𝑒−(1+𝛽)

𝑝
1

𝜃⁄ +(1−𝑝)
1

𝜃⁄
)]

−
1

𝛼

" 
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5.2 Monte Carlo simulation study                         

"In this subsection, we study the performance and accuracy of 

maximum likelihood estimates of the OLL-PIL model parameters by 

conducting various simulations for different combinations of 5 sample 

sizes with two sets of parameter values. Algorithm II was used to generate 

random data from the OLL-PIL distribution. The simulation study was 

repeated N = 10,000 times each with samples of size n = 25, 50, 100, 200, 

400 combined with parameter values (I): 𝜃 = 0.7, 𝛽 =4, 𝛼 = 0.8, and (II): 

𝜃 = 1.5, 𝛽 = 0.6, 𝛼 = 2 . Four quantities were computed in this 

simulation study: (i) Average bias of the MLE �̂� of the parameter 𝜗 =

𝛼, 𝛽, 𝜃 : 
1

𝑁
∑ (�̂� − 𝜗)𝑁

𝑖=1 ;   (𝑖𝑖)  Root mean squared error (RMSE) of the 

MLE �̂� of the parameter 𝜗 = 𝛼, 𝛽, 𝜃: [
1

𝑁
∑ (�̂� − 𝜗)

2𝑁
𝑖=1 ]

0.5

;(𝑖𝑖𝑖) Coverage 

probability (CP) of 95% confidence intervals of the parameter  𝜗 =

𝛼, 𝛽, 𝜃 ; (𝑖𝜐)  Average width (AW) of 95% confidence intervals of the 

parameter  𝜗 = 𝛼, 𝛽, 𝜃. Table 4 presents the Average Bias, RMSE, CP and 

AW values of the parameters 𝛼, 𝛽 and 𝜃   for different sample sizes. 

According to the results, it can be concluded that as the sample size n 

increases, the RMSEs decrease toward zero. We also observe that for all 

the parameters, the biases decrease as the sample size 𝑛 increases. The 

results show that the coverage probabilities of the confidence intervals are 

quite close to the nominal level of 95% and that the average confidence 

widths decrease as the sample size increases. Consequently, the MLE’s 

and their asymptotic results can be used for estimating and constructing 

confidence intervals even for reasonably small sample sizes. 
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Table 4: Monte Carlo simulation results: Average Bias, RMSE, CP and AW 
 I II 

 

Parameter 

 

𝒏 

 

Average 

bias 

 

 

RMSE 

 

      

CP 

 

     

AW 

 

Average 

bias 

 

 

RMSE 

 

      

CP 

 

     

AW 

𝜽 25 0.649 0.388 0.961 0.784 0.656 0.866 0.944 3.841 

50 0.628 0.377 0.963 0.685 0.655 0.847 0.942 2.405 

100 0.592 0.361 0.964 0.472 0.652 0.841 0.945 1.876 

200 0.585 0.354 0.965 0.451 0.642 0.838 0.947 1.579 

400 0.575 0.335 0.974 0.365 0.571 0.797 0.963 0.367 

𝜷 

 

25 2.449 2.198 0.963 1.238 0.587 0.693 0.963 5.050 

50 2.383 2.119 0.956 0.423 0.575 0.681 0.964 1.569 

100 1.926 2.176 0.957 0.329 0.556 0.621 0.968 0.847 

200 1.911 2.177 0.962 0.246 0.545 0.611 0.969 0.545 

400 1.848 1.986 0.964 0.203 0.442 0.495 0.970 0.254 

𝜶 25 0.663 0.744 0.943 2.179 0.626 0.953 0.922 1.882 

50 0.511 0.656 0.940 1.519 0.522 0.693 0.939 1.474 

100 0.448 0.499 0.931 1.147 0.435 0.595 0.926 0.839 

200 0.441 0.466 0.936 0.887 0.431 0.379 0.928 0.712 

400 0.427 0.441 0.946 0.339 0.349 0.343 0.949 0.419 

6. Concluding Remarks 

"In this paper, we have proposed a new family of distributions called odd 

log-logistic power inverse Lindley distribution. We get the probability 

density functions for odd log-logistic inverse Lindley and power inverse 

Lindley distributions as special cases from OLL-PIL. Some mathematical 

properties along with estimation issues are addressed. The hazard rate 

function behavior of the odd-logistic power inverse Lindley distribution 

shows that the subject distribution can be used to model reliability data. 

The estimation of parameters is approached by the method of maximum 

likelihood. We present a simulation study to exhibit the performance and 

accuracy of maximum likelihood estimates of the OLL-PIL model 

parameters. Real data application was also presented to illustrate the 

usefulness and applicability of the OLL-PIL distribution." 
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Appendix 

In this section, we report some needed derivatives in Section 3. 

 

𝜕2ℒ

𝜕𝜃2
=

−𝑛

𝜃2
− 2 ∑

𝑡𝑖
𝜃(1−𝑡𝑖)𝜃 ln(𝑡𝑖) ln(

𝑡𝑖
1−𝑡𝑖

)+𝑡𝑖
𝜃(1−𝑡𝑖)𝜃 ln(1−𝑡𝑖) ln(

1−𝑡𝑖
𝑡𝑖

)

[𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃]

2
𝑛
𝑖=1 , 

𝜕2ℒ

𝜕𝛼2
= −

𝑛

𝛼2
+ ∑

𝑥𝑖
𝛼 ln(𝑥𝑖)2

(1+𝑥𝑖
𝛼)

2
𝑛
𝑖=1 − 𝛽 ∑

(ln 𝑥𝑖)2

𝑥𝑖
𝛼

𝑛
𝑖=1 + (𝜃 − 1) ∑

𝑡𝑖
(𝛼𝛼)

𝑡𝑖−[𝑡𝑖
(𝛼)

]
2

𝑡𝑖
2

𝑛
𝑖=1   

             +(1 − 𝜃) ∑
𝑡𝑖

(𝛼𝛼)
(1−𝑡𝑖)+[𝑡𝑖

(𝛼)
]

2
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𝑛
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            −2𝜃(1 − 𝜃) ∑ [𝑡𝑖
(𝛼)

]
2 𝑡𝑖

𝜃−2+(1−𝑡𝑖)𝜃−2

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

+𝑛
𝑖=1

2𝜃2 ∑ [𝑡𝑖
(𝛼) 𝑡𝑖

𝜃−1−(1−𝑡𝑖)𝜃−1

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

]
2

𝑛
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𝜕2ℒ

𝜕𝛽2 =  

[
−2𝑛
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𝑛
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𝑛
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𝑡𝑖
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𝑡𝑖

𝑛
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2
𝑛
𝑖=1  

𝜕2ℒ

𝜕𝛼𝜕𝛽
= ∑ 𝑥𝑖

−𝛼 ln(𝑥𝑖) +𝑛
𝑖=1 (𝜃 − 1) ∑

𝑡𝑖
(𝛼𝛽)

𝑡𝑖−𝑡𝑖
(𝛼)

𝑡𝑖
(𝛽)

𝑡𝑖
2

𝑛
𝑖=1   

+(1 − 𝜃) ∑
𝑡𝑖

(𝛼𝛽)
(1−𝑡𝑖)−𝑡𝑖

(𝛼)
𝑡𝑖

(𝛽)

(1−𝑡𝑖)2
𝑛
𝑖=1 − 2𝜃 ∑ 𝑡𝑖

(𝛼𝛽) 𝑡𝑖
𝜃−1−(1−𝑡𝑖)𝜃−1

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

−𝑛
𝑖=1    

2𝜃(𝜃 − 1) ∑ 𝑡𝑖
(𝛼)

𝑡𝑖
(𝛽) 𝑡𝑖

𝜃−2+(1−𝑡𝑖)𝜃−2

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

𝑛
𝑖=1 + 2𝜃2 ∑ 𝑡𝑖

(𝛼)
𝑡𝑖

(𝛽)
[

𝑡𝑖
𝜃−1+(1−𝑡𝑖)𝜃−1

𝑡𝑖
𝜃+(1−𝑡𝑖)𝜃

]
2

𝑛
𝑖=1   

 

 In which 

𝑡𝑖
(𝛼𝛼)

=
𝛽2

1+𝛽
(

1

𝑥𝑖
2𝛼+1) 𝑒

−
𝛽

𝑥𝑖
𝛼

 [ln(𝑥𝑖)]2[−(𝑥𝛼 + 2) + 𝛽(1 + 𝑥−𝛼)],  

𝑡𝑖
(𝛽𝛽)

=
𝑒

−
𝛽

𝑥𝑖
𝛼

𝑥𝑖
2𝛼 (

𝛽

𝑥𝑖
𝛼(1+𝛽)

+ 1) −
2𝑒

−
𝛽

𝑥𝑖
𝛼

𝑥𝑖
𝛼(1+𝛽)3 −

2𝑒
−

𝛽

𝑥𝑖
𝛼

𝑥𝑖
2𝛼(1+𝛽)2 , 

𝑡𝑖
(𝛼𝛽)

= −
𝛽𝑒

−
𝛽

𝑥𝑖
𝛼

ln(𝑥𝑖)(1+𝑥𝑖
𝛼)

𝑥𝑖
2𝛼+1(1+𝛽)2 [

𝛽(1+𝛽)

𝑥𝛼 − 𝛽 − 2].  
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 The odd log- logistic Power Inverse Lindley  التوزيع الاحتمالى

 النموذج وخصائصه وتطبيقاته 

   ة د. محمد عبد الستار حمود، ويد. محمود عبد المنعم محمد التحي

 الملخص: 

جديد   توزيع  على  الحصول  تم  المقالة،  هذه   The odd log- logistic Powerيسمى  في 

Inverse Lindley  ،تم اشتقاق العديد من الخصائص الإحصائية للتوزيع الجديد مثل العزوم .

داله توليد العزوم، داله معدل الخطر، الترتيب العشوائي، الاحصاء الترتيبي. تم استخدام طريقة 

على تقدير   المقترح  النموذج  تطبيق  قابلية  تحليل  تم  وأخيرًا،  المعلمات.  لتقدير  الاعظم  الإمكان 

 البيانات الفعلية، كما تم إجراء مقارنة مع بعض التوزيعات الموجودة.

 : ة الكلمات المفتاحي

،  Power Inverse Lindley  ، توزيع الإحصاء الترتيبى،  الإمكان الأعظم للمعلماتتقدير    لامبرت،دالة  

 الترتيب العشوائي. 

 

 

 


